All you should Know about Surveying and Its Classifications

All you should Know about Surveying and Its Classification

 

Here is everything you need to know about surveying and its different classifications.

Surveying is a fundamental element of civil engineering since it is the initial stage in initiating a new civil engineering project.
A student must master the fundamentals of surveying in order to fully understand the procedures.
To begin learning surveying, one must first understand what surveying is and why it is important.

So first of all :

What is surveying ?

Surveying is simply the process of using direct or indirect measurements to determine the relative positions of various features on, above, or beneath the earth’s surface, and then putting them on a sheet of paper known as a plan or map.

Surveying skills are helpful in various of engineering processes. Any engineering project necessitates the use of surveying.
Below are some of the most important aspects of surveying.

You’re just about to know why surveying is that important , keep reading :

Why is it important ?

The first phase in surveying is to draw out a plan and a portion of the region that will be surveyed.
Based on the nature of the project, the best potential alignment, quantity of earthwork, and other relevant information can be computed using these prepared maps and sections.

Surveying measurements are used in the planning and design of all Civil Engineering projects, including railways, highways, tunneling, irrigation, dams, reservoirs, waterworks, sewage works, airfields, ports, enormous structures, and so on.

So, to conclude, any project of any size is built along the lines and points specified by surveying during its implementation as an initiation to its success and full achievement in the best possible ways.

 

Surveying most common classifications:

 

In order to get more in depth with surveying, you need to know that its most common classifications are:

  • Plane surveying
  • Geodetic surveying.

Let’s start with the first one :

Plane surveying :

Plane surveying refers to surveying in which the earth’s mean surface is treated as a plane and the spheroidal shape is ignored.
Plane triangles include all triangles created by survey lines. All plumb lines are parallel and the level line is deemed straight.
We are only concerned with a small portion of the earth’s surface in everyday life, and the above assumptions appear reasonable in light of the fact that the length of an arc 12 kilometers long lying on the earth’s surface is only 1cm greater than the subtended chord, and that the difference between the sum of the angles in a plane triangle and the sum of those in a spherical triangle is only one degree.

And that was all you need to know about plane surveying for now.
Now, let’s jump into the second type of surveying which is « the geodetic surveying ».

Geodetic surveying :

 

Geodetic surveying the second method of surveying that takes into consideration the shape
of the earth.
The lines on the surface are all curved, and the triangles are all spherical.
As a result, spherical trigonometry is required to be able to master the different phases of
this kind of surveying.
All geodetic surveys entail labor at a bigger scale and with a high level of precision.
We can say that the goal of a geodetic survey is to identify the precise location on the earth’s surface of a set of widely separated sites that serve as control stations for less precise surveys.

To conclude, there are two types of surveying : the plane surveying and the geodetic one.
As a matter a fact, it’s up to the civil engineer to choose the best type based on each project he’s asked to accomplish.

The question now is :

Are there other ways to classify surveying ?

The answer is a massive YES and you’re about to discover some other ways of classifying surveying.

 

Classification based on nature of field:

There are three categories of surveying that are classified depending on the nature of the field:

  • Land surveying : which is divided into three categories: topographical survey, cadastral survey, and city survey.
    It is concerned with natural and man-made characteristics on land such as rivers, streams, lakes, wood, hills, highways, trains, canals, towns, water supply systems, buildings and properties, and so on.
  • Marine surveying : This classification of surveying is also known under the name of hydrographic surveying, is simply the species and elements related to the water for the purposes of navigation, water supply, harbor construction, and mean sea level determination.
    Measurement of stream discharge, topographic survey of coasts and banks, taking and locating soundings to establish water depth, and recording ocean tidal fluctuations are actually all part of the job we’re talking about.
  • Astronomical Surveying: This type of surveying allows a surveyor to determine the absolute location of any point on the earth’s surface, as well as the absolute location and direction of any line.
    This entails making observations of celestial bodies like the sun or any fixed star. (this one is quite interesting).

 

Classification based on instruments used :

Surveying can be split into six groups based on the different types of instruments employed :

  • Surveying in a chain
  • Surveying using a compass
  • Surveying on a plane table
  • Surveying using a theodolite
  • Tacheometric surveying is a method of measuring the distance between two points.
  • Surveying using photographs

Methods used for classification: Or in other words, classification based on the method used .
Surveying can be classified into the following categories based on the methodologies used:

 

  • Surveying via triangulation
  • Surveying in a straight line

And … the last surveying classification , and my favorite one is :
Object-based classification:
There are four different forms of surveying based on the object:

  • Surveying of the Earth
  • Surveying of Mines
  • Surveying archaeology
  • Military reconnaissance

Different Types of Formwork Used in Concrete Construction

Different Types of Formwork Used in Concrete Construction

 

Formworks can be crafted from plywood, timber, steel, fabric and plastic as well. The formwork chosen for a particular construction process should be able to withstand the weight of the concrete. Therefore choosing the right type of formwork construction is essential to choose. Many types of the frame are available, which is mentioned below:

 

Timber Formwork

Timber formwork is the most widely used formwork. It has been commonly used in construction from the ancient period. It is quite economical and easy to access. Timber shuttering has the following advantages:

● It is lightweight
● Well composed
● It is easily accessible

Timber formwork is mainly used for small projects, and you can do the formwork construction with locally available timber. When compared with steel, it is quite lightweight.

Timber Formwork

Steel Formwork

 

Steel formwork is quite famous due to its durability, strength and capability of being used multiple times. It is advantageous for small projects, but they are also used for managing big projects. It provides a smooth texture when compared with the timber framework. It can be used in tanks, tunnels, columns and chimneys. Some of the advantages of steel formwork are as follows:

● It is durable and rigid
● Provides smooth finish
● It does not allow moisture to enter
● It can be used for multiple times

Steel Formwork

Aluminium Formwork

 

It is a fact that the density of aluminium is less when compared with the material steel, but it is lightweight. This formwork shares the same benefits as steel formwork. Working with aluminium formwork is indeed economical. It is used in completing big projects.

Aluminium Formwork

Plywood Formwork

 

Plywood formwork is a version of re-moulded timber. These are fixed with timber frames for manufacturing the panels of the desired size. Plywood timberwork is quite easy to manage, and it is flexible also. However, the life of plywood formwork is comparatively lower than other types of formwork.

Plywood Formwork

Fabric Formwork

 

With the development in the construction field, new technology is being used for planning and designing. The construction of complex-shaped fabric formwork has increased over the past few years. The main advantage of using fabric formwork is that it promotes flexibility and makes it possible for generating formwork of the required shape and size.

Fabric Formwork

Plastic Formwork

 

The best part of using plastic formworks is lightweight and can be used several times as well. It is best suited for concrete construction. This kind of formwork is widely becoming popular due to the multiple benefits that it provides. Some of the advantages of working with plastic formwork are given below.

● These material are lightweight, and therefore it needs less managing cost
● It is quite economical for big construction
● If it is being installed in the right way, no doubt it can be used multiple times.

Plastic Formwork

 

 

Different Uses of Box Culverts

Different Uses of Box Culverts

 

 

Introduction

A structure in constructions that allows water to flow under a road, railroad, or a similar obstruction is called a culvert.

These are generally made from a pipe or reinforced concrete and are embedded in the soil. Culverts come in different shapes. It can be round, elliptical, flat-bottomed, open-bottomed, pear-shaped, or box-like constructions.

Box culverts are those four-sided culverts used in making short-span bridges like over highways, waterways, etc. These are made of concrete and RCC (Reinforced Concrete) in particular. Box culverts come across as one of the most useful structures in modern construction. They serve various purposes like for intakes and outtakes, steam tunnels, corridor links, road crossings, service tunnels, and utility trenches.

Let’s understand the different uses of box culverts in detail below.

Uses of Box Culverts

 

Road and Highway Construction:

Box culverts are one of the most important features in road and highway construction. The box culverts let water flow under roads and highways without hampering the flow of traffic. Also, they serve as alternative animal crossings. Since these places need to endure traffic loads and extreme weather conditions, the culverts used here must be robust. Hence it is advised to build culvert out of concrete.

Highway Box Culvert

Use in Railroads :

Just like road or highway construction, box culverts are an essential element used in the construction and maintenance of railroads. They can be used here to replace small bridges or create crossings over creeks and any waterways.

Railway Box Culvert

 

Box Culverts in Utility Work:

Box Culverts are also required in utility work serving as utility tunnels that carry electricity, water, and sewer lines. In places where the climate is cold, and it is difficult to bury lines below the frost level, utility tunnels are imperative. Additionally, they are used to carry communication lines, such as telephone and cable television.

 

What makes Box Culverts Cost-Effective?

 

● Box culverts are a fast and economical method for tunnels under roadways.

● These can be tailored in large sizes to manage increased flow rates and capacities.

● Because of the rigidity and monolithic operation, separate foundations are not required which makes box culverts quite economical.

 

Suggested Read:

 

Reinforced Concrete Box Culvert Calculation Spreadsheet

Standard DWG Autocad Drawing For Box Cell Culvert

Pipe Culvert Wing Wall CAD template DWG

Culvert General Plan and Sections Details CAD Template DWG

Box Culvert Curved Concrete Layout CAD Template DWG

Box Culvert Concrete Reinforcement Details CAD Template DWG

Culvert Concrete Reinforcement Details CAD Template DWG

Box Culvert Design and Calculation Spreadsheet

What is a truss Bridge ? Types of Bridge Trusses

What is a truss Bridge ? Types of Bridge Trusses

 

Definition of a truss Bridge:

 

Truss is a structure of connected elements forming triangular units, and a bridge whose load-bearing superstructure is composed of a truss is a truss bridge.

From a mechanical point of view, truss structures are highly efficient in using the strengths of construction materials due to the fact that only axial forces are resisted in truss members.

Truss bridges are one of the oldest types of modern bridges. Trusses are generally assumed as pinned connection between adjacent truss members. Therefore, the truss members like chords, verticals, and diagonals act only in either tension or compression.

Axial forces in truss bridges under deadweight. (A) Pratt truss. (B) Warren truss.

 

Moreover, a truss is generally more rigid than a beam because a truss is composed of a variant of triangles and it has the ability to dissipate a load through the whole truss. The truss bridge is also called a beam bridge with braces.

For modern truss bridges, gusset plate connections are generally used, then bending moments and shear forces of members should be considered for evaluating the real performance of the truss bridges, which is achieved by the aid of finite element software.

For the design point of view, however, the pinned connection assumption is considered for security concerns and also for simplifying the structural design and analyses.

In addition, as the axial forces (but not bending moments and shear forces) are generally governs the stress conditions of the members, such assumption generally will not cause large errors between the real bridges and the design models.

According to this assumption, the truss members can be in tension, compression, or sometimes both in response to dynamic loads.

Owing to its simple design method and efficient use of materials, a truss bridge is economical to design and construct.

Short-span truss bridges are built as simply supported, while the large span truss bridges are generally built as continuous truss bridges or cantilever truss bridges.

 

 

Truss bridge examples

Types Of Trusses :

There are three common truss configurations that are often used in bridges, namely Warren truss, modified Warren truss, and Pratt truss.

All these truss configurations can be used as an underslung truss, a semithrough truss, or a through truss bridge.

Warren trusses have parallel chords and alternating diagonals. Warren trusses with verticals to reduce panel size are named as modified Warren truss.

Pratt trusses have diagonals sloping downward toward the center and parallel chords.

Truss types according to structural forms. (A) Warren truss. (B) Modified Warren
truss. (C) Pratt truss

What is Vibroflotation Ground Improvement Method?

What is Vibroflotation Ground Improvement Method?

 

Vibroflotation is a technique developed in Germany in the 1930s for in situ densification of thick layers of loose granular soil deposits. Vibroflotation was first used in the United States about 10 years later. The process involves the use of a vibroflot (called the vibrating unit).
The device is about 2 m in length. This vibrating unit has an eccentric weight inside it and can develop a centrifugal force.
The weight enables the unit to vibrate horizontally. Openings at the bottom and top of the unit are for water jets. The vibrating unit is attached to a follow-up pipe. The figure below shows the vibroflotation equipment necessary for compaction in the field.
The entire compaction process can be divided into four steps:
  • Step 1. The jet at the bottom of the vibroflot is turned on, and the vibroflot is lowered into the ground.
  • Step 2. The water jet creates a quick condition in the soil, which allows the vibrating unit to sink.
  • Step 3. Granular material is poured into the top of the hole. The water from the lower jet is transferred to the jet at the top of the vibrating unit. This water carries the granular material down the hole.
  • Step 4. The vibrating unit is gradually raised in about 0.3 m lifts and is held vibrating for about 30 seconds at a time. This process compacts the soil to the desired unit weight.

What is Footing ? Types Of Footings

What is Footing ? Types Of Footings

 

Introduction:

 

Foundation is the main part of any type of structure (Buildings, bridges, tunnels…). It distributes the weight of the structure over a large area of soil, avoid unequal settlement, increase structural stability and prevent lateral movement of structure.

There are different types of soil and for each individual one, soil bearing capacity is different. So, depending on the soil profile, size and load of the structure, engineers choose different types of foundation which can be shallow foundation or deep foundation.

Shallow foundation system consists of two main types: Footings and raft or mat foundation.

Footing is one of the most important parts of a structure which transfers loads of a structure to the underlying soil.

The selection of footing depends on the following factors:

  • The depth of the soil at which safe bearing strength exists.
  • The type and condition of soil.
  • The type of the superstructure.

Types Of Footings:

 

The different types of footings used for building construction are listed below:

  • Wall footing / Strip footing
  • Spread Footings
  • Isolated Footings
  • Stepped Footings
  • Combined Footings
  • Sloped Footings
  • Strapped Footings

Wall footing / Strip footings

 

Strip footings (known as strip foundations) are a shallow foundation type, usually boasting a foundation level that is no greater than 3m from the ground surface.

Strip foundations can be used for most subsoils, but are most suitable for soil which is of relatively good bearing capacity. They are particularly suited to light structural loadings such as those found in many low-rise or medium-rise domestic buildings – where mass concrete strip foundations can be used. In other situations, reinforced concrete may be required.

Very broadly, the size and position of strip foundations is typically related to the wall’s overall width. The depth a traditional strip foundation is generally equal to or greater than the overall wall width, and the foundation width is generally three times the width of the supported wall. This results in the load being transmitted at 45º from the wall base to the soil.

Wide strip foundations may be required where the soil is soft or of a low bearing capacity, so as to spread the load over a larger area. Wide strip foundations will typically require reinforcement.

Strip footing foundation

Spread Footings

 

The spread footing is utilized to support the column & walls and additionally to convey & disseminate the load coming to the structure to the soil below it.

With loads provided within the upward direction, this footing actually acts like an inverted cantilever, and this sort of footing is typically a rigid element & they’re orthogonal just in case of symmetric footing.

As the name suggests, a spread is given under the base of the foundation so that the load of the structure is distributed on wide area of the soil in such a way that the safe bearing capacity of soil is not exceeded.

 

Isolated Footings

 

Isolated footings (also known as Pad or Spread footings) are commonly used for shallow foundations in order to carry and spread concentrated loads, caused for example by columns or pillars.

Isolated footings can consist either of reinforced or non-reinforced material. For the non-reinforced footing however, the height of the footing has to be bigger in order to provide the necessary spreading of load.

Its thickness is constant and its shape can be circular, rectangular or square. It is economic and requires less excavation but its size is highly depended on the load and it is less resistant in lateral forces.

 

Stepped Footings

 

This type of footing includes the construction of a footing step by step until it reaches the desired width. This technique is mostly used in residential buildings but its utilization has been decayed over the last decades.

The stepped footing is a simple type of isolated footing which is provided over soil having less bearing capacity. Because of low soil capacity load need to be transferred on the larger area.

Stepped footings are also used to keep metal columns away from direct contact with soil to save them from corrosion effects. This type of footing carries the load of metal columns and transmit this load to the underground.

Stepped Footing Foundation

 

Combined Footings

 

Whenever two or more columns in a straight line are carried on a single spread footing, it is called a combined footing. Isolated footings for each column are generally the economical. Combined footings are provided only when it is absolutely necessary, as

  • When two columns are close together, causing overlap of adjacent isolated footings
  • Where soil bearing capacity is low, causing overlap of adjacent isolated footings
  • Proximity of building line or existing building or sewer, adjacent to a building column.

Combined Footing Foundation

Sloped Footings

 

The strapped footings having sloping top or side faces are known as sloped footings. This type of footing is useful in the construction of formwork.

Sloped or trapezoidal footings are designed and executed with utmost attention to maintain a top slope of 45 degrees from all sides. The amount of reinforcement and concrete used in the sloped footing construction is less than that of plain isolated footing. Therefore, it decreases the utilization of concrete and reinforcement.

Sloped Footing Foundation

Strapped Footings

 

A strap footing usually supports two columns, so it’s a special type of combined footing. If a property line exists at or near the edge of an exterior column, a normal isolated footing would be placed eccentrically under this column and it would tend to tilt.

This problem may be prevented by connecting this footing with the adjacent interior footing with a strap concrete beam. The use of a strap footing may be justifiable where the distance between columns is long and a regular combined footing is impractical due to the required large excavation.

Strap Footing Foundation

 

 

 

 

 

 

 

 

 

 

What is a Retaining Wall ? Types of Retaining Walls

What is a Retaining Wall ? Types of Retaining Walls

 

Introduction:

A Retaining Wall is a structure that is designed and constructed to withstand lateral pressure of soil or hold back soil materials.

The lateral pressure could be also due to earth filling, liquid pressure, sand, and other granular materials behind the retaining wall structure.

Retaining walls are vertical or near-vertical structures designed to retain material on one side, preventing it from collapsing or slipping or preventing erosion. They provide support to terrain where the soil’s angle of repose is exceeded and it would otherwise collapse into a more natural form. The principal characteristic of a retaining wall is being able to withstand the pressure exerted by the retained material, which is usually soil.

The most important consideration in proper design and installation of retaining walls is to recognize and counteract the tendency of the retained material to move downslope due to gravity. This creates lateral earth pressure behind the wall which depends on the angle of internal friction (phi) and the cohesive strength (c) of the retained material, as well as the direction and magnitude of movement the retaining structure undergoes.

Lateral earth pressures are zero at the top of the wall and – in homogenous ground – increase proportionally to a maximum value at the lowest depth. Earth pressures will push the wall forward or overturn it if not properly addressed. Also, any groundwater behind the wall that is not dissipated by a drainage system causes hydrostatic pressure on the wall. The total pressure or thrust may be assumed to act at one-third from the lowest depth for lengthwise stretches of uniform height.

It is important to have proper drainage behind the wall in order to limit the pressure to the wall’s design value. Drainage materials will reduce or eliminate the hydrostatic pressure and improve the stability of the material behind the wall. Drystone retaining walls are normally self-draining. As an example, the International Building Code requires retaining walls to be designed to ensure stability against overturning, sliding, excessive foundation pressure and water uplift; and that they be designed for a safety factor of 1.5 against lateral sliding and overturning.

There ara various types of retaining wall structures which are used for numerous goals.

Gravity Retaining Wall :

Gravity retaining wall depends on its self weight only to resist earth pressure.

Commonly, gravity retaining wall is massive because it requires significant gravity load to counter act soil pressure.

Slidin, overturning and bearing forces shall be taken into consideration while this type of retaining  wall structure is designed.

It can be constructed from different materials such as concrete, stone and masonry units.

Crib retaining wall, gabions and bin retaining wall are types of gravity retaining walls.

Gravity Retaining Wall

Crib Retaining Wall :

Crib Retaining Walls are low cost, of open web construction and can be quickly and inexpensively erected. They can be used almost anywhere a retaining wall is needed – driveways, building sites, garden areas, and when planted out will add beauty and value to your property.

Crib walls are gravity retaining walls constructed from interlocking precast concrete components, filled with free draining material and earth backfill, eliminating the hazards of hydrostatic pressure building up behind the wall.

Crib Retaining Wall

Gabion Retaining Walls :

Gabion retaining walls are multi-celled, rectangular wire mesh boxes which are filled with rocks or other suitable materials.

It is employed for construction of erosion control structures and used to stabilize steep slopes.

Gabion Retaining Walls

Cantiliver Retaining Wall :

Cantiliver retaining wall is composed of stem and base slab and is constructed from reinforced concrete, precast concrete or prestress concrete.

Cantiliver retaining wall is the most common type used as retaining walls.

Sometimes cantilevered walls are buttressed on the front, or include a counterfort on the back, to improve their strength resisting high loads. Buttresses are short wing walls at right angles to the main trend of the wall. These walls require rigid concrete footings below seasonal frost depth. This type of wall uses much less material than a traditional gravity wall.

The portion of the base slab beneath material is termed as heel, and the other part is called toe. It is economical up to height of 10m. Similar to gravity wall, sliding, overturning and bearing pressure shall be taken into consideration during its design.

There are 3 different types of cantiliver retaining walls :

  • T – shaped cantiliver retaining wall
  • L – shaped cantiliver retaining wall
  • T – shaped cantiliver retaining wall with shear key

Cantiliver Retaining Wall

Counter-fort / Buttressed Retaining Wall :

It is a cantiliver retaining wall but strengthened with counter forts monolithic with the back of the wall slab and base slab.

Counter fort spacing is equal or slightly larger than half of the counter-fort height. It’s height ranges from 8 to 12m.

Counter-fort Retaining Wall

A buttress wall is the modified version of the counter-fort retaining wall in which the counter-forts, known as the buttresses, are provided at the other side of the backfill.

A buttress wall is more economical when compared to a counter-fort retaining wall. Buttress walls are not much preferred due to the provision of buttresses in the wall. These buttresses reduc the clearance on the front side of the wall.

Buttresses are short wing walls at right angles to the main trend of the wall. These walls require rigid concrete footings below seasonal frost depth. This type of wall uses much less material than a traditional gravity wall.

Anchored Retaining Wall :

This type of retaining wall is used when the space is limited or thin retaining wall is required.

Anchored retaining wall is suitable for loos soil over rocks. Considerably high retaining wall can be constructed using this type of retaining wall structure system.

Deep cable rods or wires are driven deep sideways into the earth, then the ends are filled with concrete to provide anchor.

Anchors (tiebacks) actes against overturning and sliding pressure.

Advantages of anchored retaining walls

  • Mostly used for slope protection and earth retaining works of deep excavations.
  • Thin walls or very light structures can be designed in combinations with anchored walls.
  • Anchored walls are one of the most economical system of earth retention.
  • Combination with sheet piles, cantilever retaining walls, piled retaining walls etc are very much useful for very deep excavations to provide a safe working area

Anchored Retaining Wall

Piled Retaining Wall :

Pile retaining wall is constructed by driving reinforced concrete piles adjacent to each other. Piles are forced into a depth that is sufficient to counter the force which tries to push over the wall.

Sheet pile walls are built using steel sheets into a slope or excavations up to a required depth, but it cannot withstand very high pressure. They are economical till height of 6m.

Piled Retainng wall

Mechanically Stabilized Earth (MSE) Retaining Wall :

It is among the most economical and most commonly constructed retaining walls. Mechanically stabilized earth retaing wall is supported by selected fills (granular) and held together by reinforcements, which can be either metallic strips or plastic meshes.

Types of MSE retaining wall include panel, concrete block and temporary earth retaining walls.

Mechanically Stabilized Earth (MSE) Walls

Hybrid Systems :

Retaining walls that use both mass and reinforcement for stability are termed as Hybrid or Composite retaining wall systems.

 

 

What is LIDAR? How it works?

What is LIDAR? How it works?

 

Introduction:

LIDAR or Light Detection And Ranging uses lasers to measure the elevation of things like the ground forests and even buildings. It is lot like sonar which uses sound waves to map things, or radar which uses radio waves to map things, but a LIDAR system uses light sent out from a laser.

For the record, there are different ways to collect LIDAR data: from the ground, from an airplane or even from space.

Airborne LIDAR data are the most commonly available LIDAR data and airborne LIDAR data will also be freely available through the National Ecological Observatory Network or NEON. Many other sources are becoming free for many countries.

The four parts of LIDAR Sytem:

To understand how lasers are used to calculate height in airborne LIDAR, we need to focus on the four parts in the system.

1. LIDAR Unit – Scans the ground:

First, the airplane contains the LIDAR unit itself which uses a laser to scan the earth from side to side as the plane flies. The laser system uses either green or near infrared light because these wavelengths or types of light reflect strongly off of vegetation.

2. Global Positioning System – Tracks planes x,y,z position:

The next component of a LIDAR system is a GPS receiver that tracks the altitude and X,Y location of the airplane.

The GPS allows us to figure out where LIDAR reflections are on the ground.

3. Inertial Measurement Unit (IMU) – Tracks Plate Position:

The third component of the LIDAR system is what’s called an inertial measurement unit or IMU.

The IMU tracks the tilt of the plane in the sky it flies which is important for accurate elevation calculations.

4. Computer – Records Data:

Finally, the LIDAR system includes a computer which records all that important height information that the LIDAR collects as it scans the earth’s surface.

 

How these four parts of the system work together to get fantastically useful later dataset?

 

The laser in the LIDAR system scans the earth actively emitting light energy towards the ground. Now before we go any farther, let us get two key LIDAR terms associated with this emitted light energy out of the way.

First, let’s define the word “pulse”. A pulse simply refers to a burst of light energy that is admitted by the LIDAR system.

And second, lets define the word “return”. Return the first reflected light energy that has been recorded by the LIDAR sensor.

Pulses of light energy travel to the ground and return back to the LIDAR sensor.

To get height the LIDAR system records the time that it takes for the light energy to travel to the ground and back. The system then uses the speed of light to calculate the distance between the top of that object and the plane.

To figure ground elevation, the plane’s altitude is calculated using the GPS receiver and then we subtract the distance that the light travel to the ground.

There are two more things in a LIDAR system to consider when calculating height. First, the plane rocks a bit in the sky as it flies due to turbulence in the air. These movements are recorded by the inertial measurement unit or IMU so that they can be accounted for when height values are calculated for each LIDAR return.

An airborne system scans the earth from side to side to cover a larger area on the ground when flying. So while some light pulses travel vertically from the plane to the ground or directly at nadir, most pulses leave the plane angle or off nadir. The system needs to account for pulse angle when it calculates elevation.

How a LIDAR system works?

The LIDAR system emits pulses of light energy towards the ground using a laser, it then records the time it takes for the pulse to travel to the ground and return back to the sensor. It converts this time to distance using the speed of light.

The system then uses the plan’s altitude, tilt, and the angle of the pulse to calculate elevation. It also uses a GPS receiver to calculate the object’s location on the ground.

All this information is recorded on that handy dandy computer also mounted on the airplane.

Self-compacting concrete (SCC) – Advantages, Disadvantages and Applications

Self-compacting concrete (SCC) – Advantages, Disadvantages and Applications

 

Introduction

Self-compacting concrete (SCC) is a concrete which flows under its own weight and doesn’t require any external vibration for compaction, it has revolutionized concrete placement.

Such concrete should have relatively low yield value to ensure high flow ability, a moderate viscosity to resists segregation and bleeding and must maintain its homogeneity during transportation, placing and curing to ensure adequate structural performance and long termdurability.

Self-compacting concrete (SCC) can be defined as a fresh concrete which possesses superior flow ability under maintained stability (i.e. no segregation) thus allowing self-compaction that is, material consolidation without addition of energy.

It is a fluid mixture suitable for placing in structures with Congested reinforcement without vibration and it helps in achieving higher quality of surface finishes.

The three properties that characterise a concrete as self-compacting Concrete are :

  • Flowing ability: the ability to completely fill all areas and corners of the formwork into which itis placed
  • Passing ability: the ability to pass through congested reinforcement withoutseparation of the constituents or blocking
  • Resistance to segregation: the ability to retain the coarse components of the mixin suspension in order to maintain a homogeneous

 

Applications of Self-Compacting Concrete

 

The main applications of this type of concrete are the following:

  • Construction of raft and pile foundations
  • Retrofitting and repairing constructions
  • Structures with complex reinforcement distributions
  • Construction of earth retaining systems
  • Drilled shafts
  • Columns

 

Advantages of (SCC) Self Compacting Concrete

 

Self-compacting concrete comes with several advantages compared with regular concrete. Some of these benefits include:

  • Reduces labor costs.
  • Improved constructability.
  • High durability, strength, and reliability.
  • Minimizes voids in highly-reinforced areas.
  • Reduces permeability in concrete structures.
  • Fast placement without mechanical consolidation.
  • The SCC construction is faster than normal concrete.
  • SCC enables freedom in designing concrete structures
  • Creates smoother and more aesthetic surface finishes.
  • Eliminates problems associated with concrete vibration.
  • Creates high-quality structures with improved structural integrity.
  • Allows for easier pumping, and there are many placement techniques available.
  • Allows for innovative architectural features, since it can be used in complex forms.
  • Reduced noise during placement as no vibration is required
  • SCC requires a lower pumping pressure. Hence, concrete can be easily pumpedover longer distances and heights compared to traditional concrete

Disadvantages of (SCC) Self Compacting Concrete

 

As with any construction material, self-compacting concrete faces the following limitations:

  • Material selection is more strict.
  • Construction costs are much more higher, compared with regular concrete.
  • Higher precision is required when measuring and monitoring.
  • There is no globally accepted test standard to undergo an SCC mix design.
  • The cost of construction is costlier than conventional concrete construction.
  • Many trial batches and laboratory tests are required to use a designed mixture.
  • There is no internationally accepted test standard for self-compacting concrete mix.
  • The higher flow rate of SCC compared to traditional concrete can cause adynamic pressure, in addition to the hydrostatic pressure of placed concrete, and thismust be taken into consideration for formwork design

 

Material Use In (SCC) Self Compacting Concrete

Cement :

Ordinary Portland Cement, 43 or 53 grade can be used

Aggregates :

The maximum size of aggregate is generally limited to 20 mm. An aggregate of size 10 to 12mm is desirable for structures having congested reinforcement.

Wherever possible size of aggregate higher than 20mm could also be used. Well graded cubical or rounded aggregates are desirable.

Aggregates should be of uniform quality with respect to shape and grading. Fine aggregates can be natural or manufactured.

The grading must be uniform throughout the work. The moisture content or absorption characteristics must be closely monitored as the quality of SCC will be sensitive to such changes.

Particles smaller than 0.125 mm i.e. 125-micron size are considered as FINES which contribute to the powder content

Mixing Water :

Water quality must be established on the same line as that for using reinforced concrete or prestressed concrete.

Chemical Admixtures :

Super plaseizers are an essential component of SCC providing necessary workability. The new generation super plasticizers termed poly-carboxylated ethers (PCE) is particularly useful for SCC.

Other types may be considered as necessary, such as Viscosity Modifying Agents (VMA) for stability, air-entraining agents (AEA) to improve freeze-thaw resistance, and retarders for Control of Setting.

Mineral Admixtures:

This may vary according to the mix design and the properties required. Below is a list of the different mineral admixtures used, and the properties they provide to the concrete mixture:

  • Fly ash: Used to improve the filling of the internal concrete matrix, resulting in fewer pores. This reduces permeability and improves the quality of structures.
  • Ground granulated blast furnace slag (GGBS): GGBS helps improve the rheological properties of concrete.
  • Stone Powder: Incorporated to improve the powder content of the mixture.
  • Silica Fumes: Used to improve the mechanical properties of the structure.

Transport, pumping, placing and finishing

Transport

Self-compacting concrete has higher fluidity compared to traditional concrete. Hence,there is a higher chance of spillage during transport. Additional caution is advised by reducing the batch size on the back of a truck, as well as ensuring the water-tightnessof the drum.

Extreme weather conditions (very high or low temperature) can affect the self-compacting properties of concrete. Under such conditions, the transport duration must be minimized by choosing non-peak hours in congested areas and also by choo-ing the closest concrete production plant to the placement site.

Overall, the averagetime that an SCC mixture can spend on the back of a truck before placement needs to be considered and the mixture design needs to be optimized accordingly. Otherwise,flowability properties might not be achieved.

Pumping, placing and formwork

An advantage of SCC is its excellent flow properties, which results in easier pumping and placing of SCC compared to traditional concrete. After discharging, self-compacting concrete can flow up to 10m in horizontal directions.

The excellent flowability of SCC also results in a much higher filling capability compared to traditional concrete, i.e. it can quickly fill inaccessible voids between reinforcements and formwork.

The placement rate of SCC can occur over ashort amount of time. Therefore, it is essential that all formwork, linings, reinforcing steel and any other embedded objects are secured and tightened before placement.

SCC can be placed with chutes, buckets and pumps. Pumping is the most common method of SCC placement because of excellent flowability without segregation.

Pumping of SCC from a truck using a crane pump at a building site

Surface finish of SCC

SCC is generally used for architectural concrete because the surface finish of SCC is of high quality, often more appealing with sharp edges compared to traditional concrete. The improved surface finish is attributed to the self-levelling and filling capabilities of SCC, which allows concrete to flow smoothly, and thereby fill holes.

The surface finish of traditional concrete often has discolouration because of hydrationby-products and segregation.

Other imperfections such as sand textured areas, honeycombing (aggregate bridging), and some problems caused by mortar loss canal so occur. Using SCC can increase the chance of eliminating these surface imperfections. However, a well-balanced concrete mixture with optimized rheological properties is required to achieve a high-quality surface finish for SCC, i.e. aesthetic appeal for exposed architectural use.

Mixtures with a lower viscosity, i.e. higher slump flow allow for entrained air to escape more efficiently and thereby provide a better surface finish.

The quality of formwork surfaces, type and amount of releasing agent, as well as production and placement methods also affect the surface finish of SCC.

 

 

 

 

What is Polymer Concrete? Advantages and disadvantages – Applications

What is Polymer Concrete? Advantages and disadvantages – Applications

 

Introduction

Polymer concrete is the composite material made by fully replacing the cement hydrate binders of conventional cement concrete with polymer binders or liquid resins, and is a kind of concrete-polymer composite.

For hardening of polymer concrete, most liquid resins such as thermosetting resins, methacrylic resins and tar-modified resins are polymerized at ambient or room temperature. The binder phase for polymer concrete consists only of polymers, and does not contain any cement hydrates. The aggregates are strongly bound to each other by polymeric binders.

The different ways in which the polymer is introduced into the concrete (hardened concrete) will vary widely based on the commercial objective. The polymers can be employed in concrete in different ways.

They are:

  • Polymer Impregnated Concrete (PIC)
  • Polymer-Modified Concrete (PMC)
  • Polymer Concrete (PC)
  • Polymer as Protective Coating
  • Polymer as Bonding Agent

Advantages and disadvantages:

The advantages and disadvantages of polymeric binders are directly given to the polymer concrete. Accordingly, in comparison with ordinary cement concrete, its properties such as strength, adhesion, watertightness, chemical resistance, freeze-thaw durability and abrasion resistance are generally improved to a great extent by polymer replacement. Since the bond between polymeric binders and aggregates is very strong, its strength properties depend on those of the aggregates.

On the other hand, its poor thermal and fi re resistance and its large temperature dependence of mechanical properties are disadvantages due to the undesirable properties of the polymer matrix phases. Therefore, the glass transition point (or temperature) of the polymer matrix phases should be noted from the viewpoint of such thermal properties.

Thermoplastic resins generally retain their practical properties at temperatures below the glass transition point and lose them at temperatures exceeding the point, beginning to thermally decompose at somewhat higher temperatures.

The practical temperature range of the thermoplastic resins may be improved by the addition of suitable cross-linking monomers or comonomers having higher glass transition points.

Thermosetting resins do not commonly show a glass transition point, and retain their mechanical properties up to the thermal decomposition temperature. Such essential disadvantages of the polymer concrete can be considerably improved by controlling the necessary polymeric binder content by volume to a minimum.

Practical applications

Structural precast products:

  • Manholes and handholes for telecommunication cable lines,
  • electric power cable lines and gas pipelines,
  • prefabricated cellars or stockrooms,
  • tunnel liner segments for telecommunication cable lines and sewerage,
  • pipes for sewage,
  • hot spring water and seawater,
  • piles for port or hot spring construction,
  • FRP-reinforced frames or panels for buildings,
  • machine tool structures, e.g.
  • beds and saddles, etc.

Non structural precast products :

  • Gutter covers,
  • U-shaped gutters,
  • footpath panels,
  • permanent forms for checkdams with acidic water and offshore or marine structures,
  • terrazzo tiles and panels, and large-sized or curved decorative panels for buildings,
  • partition wall panels, sinks, counters, washstands, bathtubs, septic tanks, electrolytic tanks, works of art, e.g. carved statues and objets d’art, tombs for Buddhists, etc.

Cast-in-place applications :

  • Spillway coverings in dams,
  • protective linings of stilling basins in hydroelectric power stations,
  • coverings of checkdams,
  • foundations of buildings in hot spring areas,
  • acid-proof linings for erosion control dams with acidic water,
  • patch materials for damaged concrete structures,
  • overlays for pavement repairs,
  • overlay strengthening for bridge decks,
  • drainage pavements using porous polymer concrete, etc.

Precast applications :

  • Transportation applications such as railroad crossings,
  • railroad ties, median barriers, etc.
  • Structural and building panels
  • Sewer pipes, equipment vaults, drainage channels, etc.
  • Corrosion-resistant tiles, bricks and linings
  • Small water-flow control structures
  • Stair treads and nosings
  • Non conductive, non magnetic support structures for electrical equipment
  • Manhole structures and shims
  • Components for the animal-feeding industry
  • Large-scale pre-insulated wall panels for segmental building construction
  • Electrical insulators
  • Machine tool bases

Cast-in-place applications :

  • Patching materials for reinforced concrete structures
  • Overlays for reinforced concrete structures in the transportation industry
error: Content is protected !!
Exit mobile version