Design of Sheet Pile Walls Manual

Design of Sheet Pile Walls Manual

 

This manual provides information on foundation exploration and testing procedures, analysis techniques, allowable criteria, design procedures, and construction consideration for the selection, design, and installation of sheet pile walls.

The guidance is based on the present state of the technology for sheet pile-soil-structure interaction behavior. This manual provides design guidance intended specifically for the geotechnical and structural engineer.

It also provides essential information for others interested in sheet pile walls such as the construction engineer in understanding construction techniques related to sheet pile wall behavior during installation.

Download Link

 

 

Advanced Geotechnical Finite Element Modeling using PLAXIS

Advanced Geotechnical Finite Element Modeling using PLAXIS

 

Published By: PLAXIS
Published Year: 2012
Size: 19 MB
Quality: Original preprint
Abstract: CONTENTS
A. Section 1: Geotechnical Analysis using PLAXIS Programs
B. Section 2: Modelling of Deep Excavations
C. Section 3: Modelling of Piled Foundations
D. Section 4: Modelling of Tunnel‐Soil‐Structure Interaction Problems
E. Conclusions
F. References

 

Download link

The Boundary Element Method in Geophysical Survey

The Boundary Element Method in Geophysical Survey

 

Balgaisha Mukanova, Igor Modin – The Boundary Element Method in Geophysical Survey

Springer, 2018
pdf, 162 pages, english
ISBN: 978-3-319-72907-7

The Boundary Element Method in Geophysical Survey

This volume is devoted to the application of the integral equations method (IEM) and boundary elements method (BEM) to problems involving the sounding of geological media using direct current (DC). Adaptive mesh generation algorithms and numerical methods for solving a system of integral equations are discussed. Integral equations for the media, which contains piecewise linear contact boundaries, immersed local inclusions, and subsurface relief, are derived and solved numerically. Describes in detail the application of the BEM and IEM to 2.5D direct problems using ERT for geological media with a complex structure and having a large number of internal contact boundaries. Provides algorithms of grid generation of the boundaries that are adapted to the geometry of the media, the surface relief and the measurements of electrode arrays. Discusses the application of the BEM to 3D sounding problems using the ERT method. Illustrates the applications of inversion programs to synthetic data generated using the BEM in comparison with the original model and discusses the quality of the associated interpretation

Download link

Correlations of Soil Properties

Correlations of Soil Properties

 

An essential guide to improving preliminary geotechnical analysis and design from limited data

Soil Properties and their Correlations, Second Edition provides a summary of commonly-used soil engineering properties and gives a wide range of correlations between the various properties, presented in the context of how they will be used in geotechnical design.

The book is divided into 11 chapters: Commonly-measured properties; Grading and plasticity; Density; Permeability, Consolidation and settlement; Shear strength; California bearing ratio; Shrinkage and swelling characteristics; Frost susceptibility; Susceptibility to combustion; and Soil-structure interfaces. In addition, there are two appendices: Soil classification systems; and Sampling methods.

This new, more comprehensive, edition provides material that would be of practical assistance to those faced with the problem of having to estimate soil behaviour from little or no laboratory test data.

Key features:

  • Soil properties explained in practical terms.
  • A large number of correlations between different soil properties.
  • A valuable aid for assessing design values of properties.
  • Clear statements on practical limitations and accuracy.

An invaluable source of reference for experienced professionals working on geotechnical design, it  will also give students and early-career engineers an in-depth appreciation of the appropriate use of each property and the pitfalls to avoid.

Download Link

Foundation Design: Principles and Practices (2nd Edition)

Foundation Design: Principles and Practices (2nd Edition)

 

Using a design-oriented approach that addresses geotechnical, structural, and construction aspects of foundation engineering, this book explores practical methods of designing structural foundations, while emphasizing and explaining how and why foundations behave the way they do.

It explains the theories and experimental data behind the design procedures, and how to apply this information to real-world problems. Covers general principles (performance requirements,

soil mechanics, site exploration and characterization); shallow foundations (bearing capacity, settlement, spread footings — geotechnical design, spread footings — structural design, mats);

deep foundations (axial load capacity — full-scale load tests, static methods, dynamic methods; lateral load capacity; structural design); special topics (foundations on weak and compressible

soils, foundation on expansive soils, foundations on collapsible soils); and earth retaining structures (lateral earth pressures, cantilever retaining walls, sheet pile walls, soldier pile walls,

internally stabilized earth retaining structures). For geotechnical engineers, soils engineers, structural engineers, and foundation engineers.

[su_button url=”https://drive.google.com/open?id=1pDu1Y3kptj-uubwlq2abSh-ugkUxHIiO” size=”7″ center=”yes”] Download Link[/su_button]

 

Ground Anchors and Anchored Structures (Xanthakos)

Ground Anchors and Anchored Structures (Xanthakos)

 

Treating anchorages as a direct application of the laws of statics and the theories governing the transfer of load, this book focuses on designs that are safe and reasonably priced. It is divided into two parts.

Following a general introduction in the first chapter, Part One goes on to explore anchor systems, components, installation and construction details.

Presents special anchor systems such as extractable, compression-type, multibell, and regroutable anchors. Analyzes the transfer of load and its relation to failure modes and anchor load capacity; deals with design considerations; covers mechanisms and types of corrosion; and details anchor stressing, testing programs, and evaluation standards.

Part Two considers uses and applications and design aspects of anchored structures; presents design examples of practical value and reasonable simplicity; and incorporates examples and case histories.

 

[su_button url=”https://drive.google.com/open?id=1x-LM-1n83RIM30mugheaXJYo2WZRhfPo” size=”7″ center=”yes”] Download Link[/su_button]

 

The Foundation Engineering Handbook (Gunaratne)

The Foundation Engineering Handbook (Gunaratne)

 

  This handbook contains some of the most recent developments in theoretical and applied
foundation engineering in addition to classical foundation design methods. The inclusion of
recent developments mostly enriches the classical design concepts in Chapters 3–7, 10 and 11.

It also enables the reader to update his or her knowledge of new modeling concepts applicable
to foundation design. Most recently developed in situ testing methods discussed in detail in
Chapter 2 certainly familiarize the reader with state-of-the-art techniques adopted in site
testing.

In addition, modern ground stabilization techniques introduced in Chapter 12 by an
experienced senior engineer in Hayward-Baker Inc., a leading authority in site improvement
work across North America, provides the reader with the knowledge of effective site
improvement techniques that are essential for foundation design.

Innovative and widely used methods of testing pile foundations are introduced with numerical illustrations in Chapters 2 and 7. LRFD designs in Chapters 3 and 6 and the design of retaining structures with geogrids included in Chapter 10 are unique features of this foundation engineering handbook.

For the benefit of the reader, the basic and advanced soil mechanics concepts needed in foundation design are elaborated with several numerical examples in Chapter 1.

 

[su_button url=”https://drive.google.com/open?id=1BT3wOfQPfzYKpoRCZQiCcP2mauiUdPAC” size=”7″ center=”yes”] Download Link[/su_button]

 

Railway Geotechnics

Railway Geotechnics

Railway Geotechnics is written by four colleagues who studied at the University of Massachusetts, Amherst, in an academic program advised by Professor Ernest T. Selig.

Our collective time at the university spanned over a decade, during which we were individually inspired by Professor Selig to work on and further advance the subject of railway geotechnology, whichhe pioneered and developed into a rigorous field of study.

Since graduation, the aggregate of our professional experience includes railway operations,
consulting, research, and education.

The field of railway geotechnology was in its infancy when we were in our early careers.

Because the engineering behavior of track substructure was not well understood up to that point, perspectives on the causes and cures of substructure instability were often informed by anecdote rather than by verifiable fact. Mystique surrounded the subject in the absence of critical thinking,

often resulting in costly applications of remedial methods that did not address the root causes of track substructure problems.

Advancing the field of railway geotechnology by the writing of this book is a natural step for each of us in our careers.

The book continues the work Track Geotechnology and Substructure Management by Selig and Waters (1994) and provides an update to this field of study so that current railway
engineers and managers have easier access to new and emerging best practices.

During years of writing and discussions, we each had moments that challenged some of our beliefs while we debated the merits of emerging technology and practices.The goal of this book is to provide a better understanding track substructure in order to enable more effective design, construction, maintenance, and management of railway track so as to ensure the vitality of rail transportation.

We hope that this work will prove useful to current railway engineers and managers as well as college students pursuing careers in the field of railway engineering.

[su_button url=”https://drive.google.com/open?id=1X5JkF4bEqoJUNFmTAxEXIokcKcaVbOQC” size=”7″ center=”yes”] Download Link[/su_button]

 

Geotechnical Engineering Principles and Practices of Soil Mechanics and Foundation Engineering

Geotechnical Engineering Principles and Practices of Soil Mechanics and Foundation Engineering

This book has the following objectives:
1. T o explain the fundamentals of the subject from theory to practice in a logical way
2. T o be comprehensive an d mee t th e requirements o f undergraduate students
3. T o serve as a foundation course for graduate students pursuing advanced knowledge in the subject

There are 21 chapters i n this book. The first chapter trace s the historical background o f the
subject and the second deals with the formation and mineralogical composition o f soils.

Chapter 3 covers th e inde x properties an d classification of soil. Chapters 4 and 5 explain soi l permeability , seepage, an d th e effec t o f water on stress conditions in soil .

Stresses developed in soil due to imposed surface loads , compressibility and consolidation characteristics , and shear strength characteristics o f soil are dealt with in Chapters 6,7 , and 8 respectively. The first eight chapters develop the necessary tools for computing compressibility an d strength characteristics o f soils.

Chapter 9 deals with methods for obtainig soil samples in the field for laboratory tests and for constructed on an outcrop of sound rock, no foundation is required. Hence, in contrast to the
building itself which satisfies specific needs, appeals to the aesthetic sense, and fills its
matters with pride, the foundations merely serve as a remedy for the deficiencies of whatever
whimsical nature has provided for the support of the structure at the site which has been
selected. On account of the fact that there is no glory attached to the foundations, and that
the sources of success or failures are hidden deep in the ground, building foundations have
always been treated as step children; and their acts of revenge for the lack of attention can be
very embarrassing.
The comments made by Terzaghi are very significan t an d shoul d b e take n not e o f by all
practicing Architects an d Engineers. Architects or Engineers who do not wish to make use of the growing knowledge of foundation design are not rendering true service t o their profession. Since substructures are as important as superstructures, persons wh o are well qualified in

the design ofsubstructures should always be consulted an d the old proverb tha t a ‘stitc h i n time save s nine ‘ should always be kept in mind.

[su_button url=”https://drive.google.com/open?id=1rto5ngRucf56apYtv3UuCkptESsQl7SL” size=”7″ center=”yes”] Download Link[/su_button]

 

 

error: Content is protected !!
Exit mobile version