Water Systems Analysis, Design and Planning Urban Infrastructure Free PDF

Water Systems Analysis, Design and Planning Urban Infrastructure Free PDF

 

This book presents three distinct pillars for analysis, design, and planning: urban water cycle and variability as the state of water being; landscape architecture as the medium for built-by-design; and total systems as the planning approach.

The increasing demand for water and urban and industrial expansions have caused myriad environmental, social, economic, and political predicaments. More frequent and severe floods and droughts have changed the resiliency and ability of water infrastructure systems to operate and provide services to the public. These concerns and issues have also changed the way we plan and manage our water resources.

Focusing on urban challenges and contexts, the book provides foundational information regarding water science and engineering while also examining topics relating to urban stormwater, water supply, and wastewater infrastructures. It also addresses critical emerging issues such as simulation and economic modeling, flood resiliency, environmental visualization, satellite data applications, and digital data model (DEM) advancements.
Features:
  • Explores various theoretical, practical, and real-world applications of system analysis, design, and planning of urban water infrastructures.
  • Discusses hydrology, hydraulics, and basic laws of water flow movement through natural and constructed environments.
  • Describes a wide range of novel topics ranging from water assets, water economics, systems analysis, risk, reliability, and disaster management.
  • Examines the details of hydrologic and hydrodynamic modeling and simulation of conceptual and data-driven models.
  • Delineates flood resiliency, environmental visualization, pattern recognition, and machine learning attributes.Explores a compilation of tools and emerging techniques that elevate the reader to a higher plateau in water and environmental systems management.
Water Systems Analysis, Design, and Planning: Urban Infrastructure serves as a useful resource for advanced undergraduate and graduate students taking courses in the areas of water resources and systems analysis, as well as practicing engineers and landscape professionals.

Fundamentals Of Hydrology Free PDF

Fundamentals Of Hydrology Free PDF

 

 

It is the presence or absence of water that by and large determines how and where humans are able to live.
This in itself makes water an important compound, but when you add in that the availability of water varies enormously in time and space, and that water is an odd substance in terms of its physical and chemical properties, it is possible to see that water is a truly extraordinary substance worthy of study at great length.

To study hydrology is to try and understand the distribution and movement of fresh water around the globe. It is of fundamental importance to a rapidly growing world population that we understand the controls on availability of fresh water.

To achieve this we need to know the fundamentals of hydrology  s a science. From this position it is possible to move forward towards the management of water resources to benefit people in the many areas of the world where water availability is stressed.

 

Download Link

Fountain Design Guide Free PDF

Fountain Design Guide Free PDF

 

Water – The ultimate medium for the creation of an architectural masterpiece. Water appeals to all of our senses by adding life to an environment with the added dimensions of sound and movement. When used effectively an architectural fountain can enhance and add focus to a project, distinguishing it from the ordinary.

The Fountain People, believe that the creation of an architectural water feature should have no limitations other than the designer’s imagination. Our many years of experience and in-house design testing facilities provide us with a unique insight into the design of successful water creations.

This Fountain Design Guide has been designed for the sharing of that insight. Our intent is to assist you better understanding the design elements that result in a successful fountain design.

 

Download Link

Dams and Appurtenant Hydraulic Structures

Dams and Appurtenant Hydraulic Structures

Water, one of the few natural resources without which there is no life, is distributed throughout the world unevenly in terms of place, season and quality. For this reason it is essential to construct dams on rivers, thus forming reservoirs for the storage and the even use of water.

To date, forty-two thousand large dams have been built worldwide, and hundreds of thousands of smaller ones, which have made possible a rational use of a certain amount of river water – the most important water resource for human life and activity. Dams, together with their appurtenant hydraulic structures, belong among the most complex engineering works, above all because of their interaction with the water, their great influence on the environment and their high cost.

Therefore great significance is given to theoretical research relating to dams, to improving the methods of analysing and constructing them, and to the knowledge gained in the course of their exploitation. In the past forty years great progress has been made in this respect.

Water plays an exceptionally significant role in the economy and in the life of all countries. It is of crucial importance to the existence of people, animals, and vegetation. The settling of people in different regions of the Earth has always been closely dependant on the possibilities for water supply, parallel with those for providing food, shelter, and heat.

The increase in population, as well as the development and enrichment of mankind, in a number of places has reached a level at which the water supply, needed for the population, industry, irrigation, and production of electric power, has been brought to a critical point.

On the other hand, reserves of water on Earth are very large. They have been estimated to amount to 1.45 billion km3 (Grishin et al., 1979). If we assume that the above quantity of water is uniformly spread over the Earth’s surface, then the thickness of such a water layer would be almost 3,000 m. As much as 90% of that quantity is attributable to the water of oceans and seas, while the remainder of barely 10% belongs to lakes, rivers, underground waters, and glaciers, as well as moisture from water in the atmosphere. Only 1/5 of the freshwater, which is suitable for man’s life and activities, is available for use.

More than twenty large dams and over a hundred smaller ones have been built in the Republic of Macedonia, which have still only partially exploited the available water, and flood control remains incomplete. The majority of the large dams were built in the period from 1952 to 1982 while, principally because of the lack of investment, the past twenty years have seen the construction mainly of smaller dams with a height of up to twenty metres and a reservoir volume of 300,000 cubic metres.

In the next few years some two or three more large dams will be completed which will still not
satisfy the need for water for the water supply, for irrigation and for the production of electrical energy, which are continually on the increase. The situation in all developing countries is similar, so that dams will continue to be built in the future despite the resistance on the part of devotees of the unobstructed flow of rivers.

An important unfavourable circumstance, which renders difficult a more complete utilization of water, is the fact that it is very not uniformly distributed on the Earth’s surface – considering space, time, and quality. That is to say, particular countries and regions suffer from drought, while others possess too large quantities of water. Also, the very same region could, in the course of a particular period of the year, be exposed to drought, while suffering from floods in another period. In that way, water, that common nationwide wealth without which no life is possible, can be an irreplaceable friend to man, but also his great enemy if he is not able to utilize it in a correct manner and to keep it under control.

Hydraulic land reclamation, i.e. irrigation of land, or else drainage of excess water from a specific territory. At the moment, irrigation systems cover approximately 270 × 106 ha, or 20% of the total cultivated areas. In many countries, especially in developing ones, increased food production is only possible by improving or increasing irrigation. The greatest amount of water is spent on irrigation – 3⁄4 of total consumption in the world. Great efforts are made to develop effective ways of saving water by avoiding losses in distribution networks and by applying more skillful irrigation techniques.

Download Link

 

Hydrology Principles, Analysis, and Design Second Edition

Hydrology Principles, Analysis, and Design Second Edition

 

Hydrology is a long continuing hydroscience and much work done in this field in the past,
particularly in India, was of empirical nature related to development of empirical formulae,
tables and curves for yield and flood of river basins applicable to the particular region in which
they were evolved by investigators like Binnie, Barlow, Beale and Whiting, Strange, Ryves,
Dicken, Inglis, Lacey, Kanwar Sain and Karpov, etc.

In this book, there is a departure from empiricism and the emphasis is on the collection
of data and analysis of the hydrological factors involved and promote hydrological design on
sound principles and understanding of the science, for conservation and utilisation of water
resources. Hydrological designs may be made by deterministic, probabilistic and stochastic approaches
but what is more important is a ‘matured judgement’ to understand and avoid what is
termed as ‘unusual meteorological combination’.

 

Hydrology is a branch of Earth Science. The importance of hydrology in the assessment,
development, utilisation and management of the water resources, of any region is being increasingly
realised at all levels. It was in view of this that the United Nations proclaimed the
period of 1965-1974 as the International Hydrological Decade during which, intensive efforts
in hydrologic education research, development of analytical techniques and collection of hydrological
information on a global basis, were promoted in Universities, Research Institutions,
and Government Organisations.
[su_button url=”https://drive.google.com/open?id=1WTGyQfkVTndf2VZm14WP-VQRh5-TtFTA” size=”5″ center=”yes”]Download Link[/su_button]

Hydrogeology

Hydrogeology

 

This hydrogeology book is the English translation of the German textbook “Hydrogeologie” by Hölting and Coldewey. Published since 1980, this book is in its eighth edition. Its great success is attributed to the concept of the book. It was important for the authors to write a text that is generally easy to understand, both for experts and for persons who do not work in this special field. Consistent use of the internationally accepted SI units as well as the formula symbols in the text also contribute to the comprehensibility. All technical terms and their definitions match the various standards and are used consistently. Moreover, the original literature citations were completely revised in order to avoid misunderstandings and errors due to secondary sources. All of these points improve the readability and facilitate the understanding of the relatively complex concepts of general and applied hydrogeology.

Because this textbook is translated from the German edition, many of the hydrogeological examples depict the Central European region. Even though they have general relevance, knowledge of the local situation is not required. Furthermore, the book cites laws and regulations of the Federal Republic of Germany and the European Union (EU), whose meaning and handling are certainly also interesting for readers from other countries.

May this book promote understanding of the complex material of hydrogeology as well as the correlations between the fields of geology, hydrochemistry, geohydraulics and engineering for a wide international public and contribute to solving global problems with groundwater development, exploitation, and protection.

 

Download Link

Ground Water and Surface Water A Single Resource

Ground Water and Surface Water A Single Resource

 

As the Nation’s concerns over water resources and the environment increase, the importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. For example, contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure and commonly have been ignored in water-management considerations and policies. Many natural processes and human activities affect the interactions of ground water and surface water. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

Download Link

Contaminant Hydrogeology 3-rd Edition

Contaminant Hydrogeology 3-rd Edition

 

Waveland Press, 2018
pdf, 663 pages, english
ISBN-13: 978-1478632795
ISBN-10: 1478632798

Tremendous progress has been made in the field of remediation technologies since the second edition of Contaminant Hydrogeology was published two decades ago, and its content is more important than ever. Recognizing the extensive advancement and research taking place around the world, the authors have embraced and worked from a larger global perspective. Boving and Kreamer incorporate environmental innovation in studying and treating groundwater/soil contamination and the transport of those contaminants while building on Fetter’s original foundational work.

Thoroughly updated, expanded, and reorganized, the new edition presents a wealth of new material, including new discussions of emerging and potential contaminant sources and their characteristics like deep well injection, fracking fluids, and in situ leach mining. New sections cover BET and Polanyi adsorption potential theory, vapor transport theory, the introduction of the Capillary and Bond Numbers, the partitioning interwell tracer testing technique for investigating NAPL sites, aerial photographic interpretation, geophysics, immunological surveys, high resolution vertical sampling, flexible liner systems, groundwater tracers, and much more.

Contaminant Hydrogeology is intended as a textbook in upper level courses in mass transport and contaminant hydrogeology, and remains a valuable resource for professionals in both the public and private sectors

Download Link

Advanced Concrete Technology Processes

Advances in Water Resources Engineering

 

The past 35 + years have seen the emergence of a growing desire worldwide that
positive actions be taken to restore and protect the environment from the degrading
effects of all forms of pollution—air, water, soil, thermal, radioactive, and noise.
Since pollution is a direct or indirect consequence of waste, the seemingly idealistic
demand for “zero discharge” can be construed as an unrealistic demand for zero
waste. However, as long as waste continues to exist, we can only attempt to abate
the subsequent pollution by converting it into a less noxious form. Three major
questions usually arise when a particular type of pollution has been identified: (1)
How serious are the environmental pollution and water resources crisis? (2) Is the
technology to abate them available? And (3) do the costs of abatement justify the
degree of abatement achieved for environmental protection and water resources
conservation? This book is one of the volumes of the Handbook of Environmental
Engineering series. The principal intention of this series is to help readers formulate
answers to the above three questions.The traditional approach of applying tried-and-true solutions to specific environmental
and water resources problems has been a major contributing factor to the
success of environmental engineering, and has accounted in large measure for the
establishment of a “methodology of pollution control.” However, the realization
of the ever-increasing complexity and interrelated nature of current environmental
problems renders it imperative that intelligent planning of pollution abatement
systems be undertaken. Prerequisite to such planning is an understanding of the
performance, potential, and limitations of the various methods of environmental
protection available for environmental scientists and engineers. In this series of
handbooks, we will review at a tutorial level a broad spectrum of engineering systems
(natural environment, processes, operations, and methods) currently being utilized,
or of potential utility, for pollution abatement and environmental protection.
We believe that the unified interdisciplinary approach presented in these handbooks
is a logical step in the evolution of environmental engineering.
Treatment of the various engineering systems presented will show how an engineering
formulation of the subject flows naturally from the fundamental principles
and theories of chemistry, microbiology, physics, and mathematics. This emphasis
on fundamental science recognizes that engineering practice has in recent years
become more firmly based on scientific principles rather than on its earlier dependency
on empirical accumulation of facts. It is not intended, though, to neglect
empiricism where such data lead quickly to the most economic design; certain engineering
systems are not readily amenable to fundamental scientific analysis, and in
these instances we have resorted to less science in favor of more art and empiricism.
Since an environmental water resources engineer must understand science within
the context of applications, we first present the development of the scientific
basis of a particular subject, followed by exposition of the pertinent design concepts
and operations, and detailed explanations of their applications to environmental
conservation or protection. Throughout the series, methods of mathematical modeling,
system analysis, practical design, and calculation are illustrated by numerical
examples. These examples clearly demonstrate how organized, analytical reasoning
leads to the most direct and clear solutions. Wherever possible, pertinent cost data
have been provided.Our treatment of environmentalwater resources engineering is offered in the belief
that the trained engineer should more firmly understand fundamental principles,
be more aware of the similarities and/or differences among many of the engineering
systems, and exhibit greater flexibility and originality in the definition and innovative
solution of environmental system problems. In short, the environmental and
water resources engineers should by conviction and practice be more readily adaptable
to change and progress.

 

[su_button url=”https://drive.google.com/open?id=16oyzr0MIQh2wSpir4jVJnI-UWZBThjTK” size=”7″ center=”yes”]Download Link[/su_button]

Dams and Appurtenant Hydraulic Structures

Dams and Appurtenant Hydraulic Structures

Water, one of the few natural resources without which there is no life, is distributed
throughout the world unevenly in terms of place, season and quality. For this reason it
is essential to construct dams on rivers, thus forming reservoirs for the storage and the
even use of water. To date, forty-two thousand large dams have been built worldwide,
and hundreds of thousands of smaller ones, which have made possible a rational use
of a certain amount of river water – the most important water resource for human
life and activity. Dams, together with their appurtenant hydraulic structures, belong
among the most complex engineering works, above all because of their interaction with
the water, their great influence on the environment and their high cost. Therefore great
significance is given to theoretical research relating to dams, to improving the methods
of analysing and constructing them, and to the knowledge gained in the course of their
exploitation. In the past forty years great progress has been made in this respect.

Water plays an exceptionally significant role in the economy and in the life of all coun-
tries. It is of crucial importance to the existence of people, animals, and vegetation. The
settling of people in different regions of the Earth has always been closely dependant
on the possibilities for water supply, parallel with those for providing food, shelter,
and heat. The increase in population, as well as the development and enrichment of
mankind, in a number of places has reached a level at which the water supply, needed
for the population, industry, irrigation, and production of electric power, has been

brought to a critical point.

On the other hand, reserves of water on Earth are very large. They have been
estimated to amount to 1.45 billion km3 (Grishin et al., 1979). If we assume that
the above quantity of water is uniformly spread over the Earth’s surface, then the
thickness of such a water layer would be almost 3,000 m. As much as 90% of that
quantity is attributable to the water of oceans and seas, while the remainder of barely
10% belongs to lakes, rivers, underground waters, and glaciers, as well as moisture
from water in the atmosphere. Only 1/5 of the freshwater, which is suitable for man’s
life and activities, is available for use.

[su_button url=”https://drive.google.com/open?id=1UwHuUQjKq64YSIgZZDxj9D2jezBqpJk2″ size=”7″ center=”yes”] Download Link[/su_button]
error: Content is protected !!
Exit mobile version