Structural Vibration Analysis and Damping

Structural Vibration Analysis and Damping

The analysis of structural vibration is necessary in order to calculate the natural frequencies
of a structure, and the response to the expected excitation.

In this way it can be determined whether a particular structure will fulfil its intended function and, in addition,

the results of the dynamic loadings acting on a structure can be predicted, such as the dynamic stresses, fatigue life and noise levels.

Hence the integrity and usefulness of a structure can be maximized and maintained.

From the analysis it can be seen which structural parameters most affect the dynamic response so that if an improvement or change in the response is required,

the structure can be modified in the most economic and appropriate way.

Very often the dynamic response can only be effectively controlled by changing the damping in the structure.

Structural Vibration: Analysis and Damping benefits from my earlier book Structural Vibration Analysis: Modelling,
Analysis and Damping of Vibrating Structures which was published in 1983 but is now out of print.
This enhanced successor is far more comprehensive with more analytical discussion, further consideration of damping sources and a greater range of examples and problems.
The mathematical modelling and vibration analysis of structures are discussed in some detail, together with the relevant theory.
It also provides an introduction to some of the excellent advanced specialized texts that are available on the vibration of dynamic systems. In addition,
it describes how structural parameters can be changed to achieve the desired dynamic performance and, most importantly,
the mechanisms and methods for controlling structural damping.
[su_button url=”https://drive.google.com/open?id=1xLzp4gs2tivHkXYV4fQtD6r9rUQtNJMU” size=”7″ center=”yes”] Download Link[/su_button]

Principles of Structural Design Wood Steel and Concrete

Principles of Structural Design Wood Steel and Concrete

 

Buildings and other structures are classified based on the risk associated with unacceptable performance of the structure, according to Table 1.1.

The risk categories range from I to IV, where category I represents buildings and other structures that pose no danger to human life in the event of failure and category IV represents all essential facilities.

Each structure is assigned the highest applicable risk category.

Assignment of more than one risk category to the same structure based on use and loading conditions is permitted.

To safeguard public safety and welfare, towns and cities across the United States follow certain
codes for design and construction of buildings and other structures.

Until recently, towns and cities modeled their codes based on the following three regional codes, which are normally revised at 3-year intervals:

1. The Building Officials and Code Administrators National Building Code
2. The Uniform Building Code
3. The Standard Building Code

 

The book is appropriate for an academic program in architecture, construction management,
general engineering, and civil engineering, where the curriculum provides for a joint coursework in wood, steel, and concrete design.

The book has four sections, expanded into 17 chapters. Section I, comprising Chapters 1
through 5, enables students to determine the various types and magnitude of loads that will be acting on any structural element and the combination(s) of those loads that will control the design.

ASCE 7-10 has made major revisions to the provisions for wind loads. In Section I, the philosophy of the load and resistance factor design and the unified approach to design are explained.

Wood design in Section II from Chapters 6 through 8 covers sawn lumber, glued laminated
timber, and structural composite or veneer lumber, which are finding increased application in wood structures.

The NDS 2012 has modified the format conversion factors and has also introduced some
new modification factors.

First, the strength capacities in accordance with the NDS 2012 for tensile, compression, and bending members are discussed and the basic designs of these members are performed.

[su_button url=”https://drive.google.com/open?id=1tOwDzLf_bV94WrwXsh3d_tfEhwQ2aZBG” size=”7″ center=”yes”] Download Link[/su_button]

 

Fundamentals of Earthquake Engineering

Fundamentals of Earthquake Engineering

 

The aim of this book is to serve as an introduction to and an overview of the latest structural earthquake engineering. The book deals with aspects of geology, engineering seismology and geotechnical engineering that are of service to the earthquake structural engineering educator, practitioner and researcher. It frames earthquake structural engineering within a framework of balance between ‘ Demand ’ and ‘ Supply ’ (requirements imposed on the system versus its available capacity for action and deformation
resistance).

In a system – integrated framework, referred to as ‘ From Source – to – Society ’ , where ‘ Source ’ describes the focal mechanisms of earthquakes, and ‘ Society ’ describes the compendium of effects on complex societal systems, this book presents information pertinent to the evaluation of actions and deformations imposed by earthquakes on structural systems. It is therefore a ‘ Source – to – Structure ’ text.

Practising engineers with long and relatively modern experience in earthquake – resistant design in high – seismicity regions will fi nd the book on the whole easy to read and rather basic. They may however appreciate the presentation of fundamental response parameters and may fi nd their connection to the structural and societal limit states refreshing and insightful. They may also benefi t from the modelling notes of Chapter 4 , since use is made of concepts of fi nite element representation in a specifi cally earthquake engineering context. Many experienced structural earthquake engineering practitioners will fi nd Chapter 3 on input motion useful and practical. The chapter will aid them in selection of appropriate  aracterization of ground shaking. The book as a whole, especially Chapters 3 and 4 is highly recommended for practising engineers with limited or no experience in earthquake engineering.

[su_button url=”https://drive.google.com/open?id=1MF-5Ez2qtWbWjA9mznkjipBDX5mpvxpo” size=”7″ center=”yes”] Download Link[/su_button]

 

Elastic Beam Calculations Handbook

Elastic Beam Calculations Handbook

As a comprehensive analytic treatment on elastic beam problems, with balanced
emphasis on both the theoretical and the practical, this book is a vastly expanded
version of the author’s Goldenbrook’s Little Red Book (2004) both in spirit and in style
and with the same approach I call open-mindedness.

The previous book was writtenprimarily for students.

The prevailing trend in education advocates critical thinking

and promotes continuing education, as exemplified by the requirements for Profes-
sional Engineer licensing.

Therefore, this book is intended for students and their teachers, as well as all structural engineers and applied mathematics professionals.

This book uses innovative analytic approaches that combine tactful applications of
mathematics with structural engineering, thereby helping the reader gain insight into
the physical implications of the formulae presented.

This means that an effective analytic treatment of the elastic beams will shed light on how the numerical work can best be planned and executed with clarity and optimal results, as well as a
minimum of time, effort, and cost.

The writing philosophy of this book leads to a presentation at once both simple
and logical, so that many important and interesting problems can be solved as
corollaries of a general theorem.

In this way, the reader will be able to see not only the trees but also the forest; this “big picture” approach is intended to be both enjoyable and inspirational.

[su_button url=”https://drive.google.com/open?id=1IBAPZOZ-iUSUKrBUc-n_AzqaKVqnYNj2″ size=”7″ center=”yes”]Download Link [/su_button]

 

Basic Structures for Engineers and Architects

Basic Structures for Engineers and Architects

The structure of a building (or other object) is the part which is responsible
for maintaining the shape of the building under the infl uence of the
forces, loads and other environmental factors to which it is subjected.

It is important that the structure as a whole (or any part of it) does not fall
down, break or deform to an unacceptable degree when subjected to such
forces or loads.

The study of structures involves the analysis of the forces and stresses
occurring within a structure and the design of suitable components to
cater for such forces and stresses.

As an analogy, consider the human body. Your body comprises a skeleton
of 206 bones which constitutes the structure of your body.

If any of those bones were to break, or if any of the joints between those bones were
to disconnect or seize up, your injured body would ‘fail’ structurally (and
cause you a great deal of pain!).

 

If you are a student studying a module called Structures, Structural Mechanics
or similar, the chapter headings in this book will tie in – more or
less – with the lecture topics presented by your lecturer or tutor.

I suggest you read each chapter of this book soon after the relevant lecture or class
to reinforce your knowledge and skills in the topic concerned.

I advise all readers to have a pen and paper beside them to jot down notes as they go
through the book – particularly the numerical examples.

In my experience,this greatly aids understanding.

[su_button url=”https://drive.google.com/open?id=18Bpt7t72LPENToIG13GWVCtMMsCO5xfa” size=”7″ center=”yes”]Download Link [/su_button]

 

Structural and Stress Analysis Theories, tutorials and examples

Structural and Stress Analysis Theories, tutorials and examples

Any material or structure may fail when it is loaded. The successful design of a structure requires detailed structural and stress analysis in order to assess whether or not it can safely support  the required loads.

Figure 1.1 shows how a structure behaves under applied loads.

To prevent structural failure, a typical design must consider the following three major aspects:

1 Strength – The structure must be strong enough to carry the applied loads.
2 Stiffness – The structure must be stiff enough such that only allowable deformation occurs.
3 Stability – The structure must not collapse through buckling subjected to the applied compressive loads.

The subject of structural and stress analysis provides analytical, numerical and experimental
methods for determining the strength, stiffness and stability of load-carrying structural members.

 

This book is not intended to be an additional textbook of structural and stress analysis for
students who have already been offered many excellent textbooks which are available on the
market.

Instead of going through rigorous coverage of the mathematics and theories, this
book summarizes major concepts and important points that should be fully understood before
students claim that they have successfully completed the subject.

One of the main features of this book is that it aims at helping students to understand the subject through asking and answering conceptual questions, in addition to solving problems based on applying the derived formulas.

[su_button url=”https://drive.google.com/open?id=1KWZdqJyEIqVfZgySNIdFqjPnJ7gkbDGn” size=”7″ center=”yes”]Download Link [/su_button]

 

Structural Analysis

Structural Analysis

Structural analysis comprises the set of physical laws and mathematics
required to study and predict the behavior of structures. This new book gathers and presents current research in the field of structural analysis across a broadspectrum of topics.

Discussions in this compilation include: evaluating seismic
safety using non-linear structural analysis; a structural analysis of how art is
made; the structure and function of vegetal ecosystems in semiarid regions of
Northeastern Mexico;

using a covariance structural analysis as a method for supporting efforts to improve employee motivation; and a method for solving linear algebraic equation sets in FE analysis software.

The focus of Chapter 1 is ” How is it that artists know how to make their
work and yet do not know how to explain it?”

In other words, how do they both simultaneously know and not know?

True solutions to the problems of arid and semiarid zones throughout the
world require a mandatory previous evaluation of the natural resources from the
study areas.

In Chapter 2, the main approach is driven to the structure and functioning of the vegetal ecosystems which intimately involves various interrelated elements such as flora, cattle, and other fauna, taking also into account management and commercialization of wooden and non wooden products.

[su_button url=”https://drive.google.com/open?id=1kvGVhTJP9sSs5mq236adecWxAeT-y7kM” size=”7″ center=”yes”]Download Link [/su_button]

 

Construction Project Management, Sixth Edition

Construction Project Management, Sixth Edition

This sixth edition of the well‐respected text on construction project management
represents a significant revision. The intent is to retain the flavor
and quality of the classic book while eliminating some of the detail and
updating the content. The content is enhanced by the addition of new
material introducing some rapidly evolving topics in construction project
management. New instructional materials have also been added to each
chapter to increase its value in the classroom. A new example project, selected
from the building sector, has been incorporated. Finally, this book
takes advantage of advances in technology by employing a companion
website that contains material that was appended at the end of the book or
inserted as oversized figures in previous editions.

 

[su_button url=”https://drive.google.com/open?id=1taT05rSbjbQ6Rh1wZWnm-a3Qct2lLGXa” size=”7″ center=”yes”]Download Link [/su_button]

 

 

error: Content is protected !!
Exit mobile version