19 Amazing Vintage Photos That Show How People Worked Before AutoCAD

19 Amazing Vintage Photos That Show How People Worked Before AutoCAD

Technological advances cause some professions to cease to exist, but in the case of drafting technicians, it just made their desks smaller and tidier. AutoCAD was released in 1982 and by 1994 as many as 750 training centers had been using it worldwide. Before, drafting required pencils, erasers, t-squares, and much more time. And the photos below really show it. Looking at them, you can almost hear the rustling paper. Now, architectural, electrical and other drafters are mainly clicking their mouse and keyboard. Scroll down to check out what the old days were like.

 

 

The World’s 18 Strangest Dams

The World’s 18 Strangest Dams

 

Whether its builder is a beaver or a person, a dam is always used for the same purpose: to manage, direct and prevent water flow. There an estimated 845,000 dams in the world; here are our picks for the 18 strangest.

Three Gorges Dam

Where: Sandouping, China–Yangtze River

Why It’s Unique: China’s Three Gorges Dam is not only the world’s largest hydroelectric dam, it’s also the world’s single largest source of electricity. The construction of the dam has been convoluted: Preliminary plans began as far back at 1932 but construction but didn’t start until late 1994; the dam isn’t scheduled to be completely finished until 2011. The structure’s estimated life is as short as 70 years; that was deemed long enough to justify the displacement of 1.24 million people.

Itaipu Dam

Where: On the border of Brazil and Paraguay–Parana River

Why It’s Unique: The Itaipu Dam, a partnership between Brazil and Paraguay, generated over 90,000 gigawatt hours of power in 2000—then a world record for hydroelectric generation. With a height of more than 196 meters, the dam stands as tall as a 65-story building. Its construction used enough steel to build 380 Eiffel Towers, along with 12.3 million cubic meters of concrete.

Guri Dam

Where: Bolivar State, Venezuela–Caroni River

Why It’s Unique: The Guri Dam in Venezuela not only boasts sky-high walls and powerful generators, it also has artistic flair. Artist Carlos Cruz Diez decorated one of the plant’s machine rooms in mind-bending pattern of colorful vertical bars, while Alejandro Otero built an enormous rotating kinetic sculpture nearby. The dam produces the energy equivalent of approximately 300,000 barrels of oil per day.

Grand Coulee Dam

Where:Grand Coulee, Washington–Columbia River

Why It’s Unique: Washington state’s Grand Coulee Dam is the largest in the United States. Nearly a mile long and 503 meters wide, its base area is large enough to hold all the pyramids of Giza. At 115 meters high, the dam is more than twice the height of Niagara Falls. The dam also has a memorable role in folk music history—a governmental energy organization commissioned Woody Guthrie to write songs about the dam in the early 1940s, including “Roll On, Columbia, Roll On” and “Grand Coulee Dam.”

Sayano-Shushenskaya Dam

Where: Khakassia, Russia–Yenisei River

Why It’s Unique: Russia’s Sayano-Shushenskaya Dam may not hold any records for its electricity generation, but other dams are no match for its sheer strength—the structure’s stated ability to withstand 8.0-magnitude earthquakes has earned it a spot in the Guinness Book of World Records. Still, not even the world’s strongest dam is immune to problems—a 2009 accident in which a turbine exploded resulted in the deaths of 75 people and 40 tons of oil spilled into the river.

Krasnoyarsk Dam

Where: Divnogorsk, Russia–Yenisey River

Why It’s Unique: Although the Krasnoyarsk dam has operated without the notoriety of its Russian neighbor, this concrete gravity dam has troubles of its own. The plant and its reservoir have apparently wrought changes on the local climate, causing the area to experience warmer and more humid weather conditions than the norm, and reducing ice cover in the area, which is in Siberia. Russia shows off the engineering feat on its 10-ruble bill.

Robert-Bourassa Dam

Where: Quebec, Canada–La Grande River

Why It’s Unique: Situated over Canada’s La Grande River, the Robert-Bourassa dam reaches 140 meters below the surface, making it the world’s largest underground plant. The dam’s centerpiece is a unique “giant’s staircase”—each step is the size of two football fields—that sweeps water downward.

Sand Dams

Where: Kenya

Why It’s Unique: Since 1995, Kenya has constructed more than 500 sand dams, which are usually about 50 meters long and 2 to 4 meters high. Unlike larger dams, which usually are used for hydroelectric power, these smaller structures are designed to store water during the wet season so dry communities have a water reservoir when the rain stops. These dams, which store water buried in silt, do a better job than surface water dams of keeping water from evaporating and maintaining water quality.

Redridge Steel Dam

Where: Redridge, Michigan–Salmon Trout River

Why It’s Unique: Located in Houghton County, Mich., this flat slab buttress dam is one of only three steel dams in the United States. Built in 1894, the dam’s spillway broke in 1941 and was partially repaired in 2001.

Timber Dams

Where: Japan

Why It’s Unique: To limit carbon dioxide emissions from steel and concrete dam construction, northern Japan’s Akita Prefecture started a project to build small-scale dams out of the country’s abundant supply of cedar. The dams serve mainly to minimize the effects of landslides and mud flows in the mountains.

Inguri Dam

Where: Jvari, Georgia–Inguri River

Why It’s Unique: At 892 feet in height, the Inguri Dam is the world’s tallest concrete arch dam. Completed in 1978, it was repaired in 1999 at a cost of 116 million euros.

New Cornelia Mine Tailings Dam

Where: New Cornelia Mine Tailings Dam

Why It’s Unique: In terms of sheer volume, the 7.4 billion cubic foot New Cornelia MineTailings Dam is the country’s largest dam structure. But this dam isn’t used for water—it’s used for mining. Mine tailings (loose collections of crushed rock left over from the mining process) were dumped here before the mine was shut down in 1983.

Syncrude Tailings Dam

Alberta, Canada


The Syncrude Tailings Dam holds the highest volume of material of any dam in the world: 540,000,000 cubic meters. This dam holds tailings from oil sands extraction; 500,000 tons of tailings are produced each day.

Verzasca Dam
Where: Ticino, Switzerland

Why It’s Unique: The Verzasca Dam, completed in 1965, is renowned for its beauty and its slender concrete arch. The design used less concrete than comparable dams, resulting in lower construction costs. When its reservoir was filled, small earthquakes were triggered.

Santee Cooper Dam System

Where: Pinopolis, South Carolina—Santee River

Why It’s Unique: Built to create jobs in the region during the Great Depression, the Santee Cooper Dam system boasts a reservoir area of 186,000 acres. The dam system, 42 miles in total, survived the third worst earthquake in U.S. history and was subsequently redesigned and stabilized for future quakes. The Pinopolis Dam, which is part of the Santee Cooper system, has the highest single-lift lock in the world for raising and lowering boats between different levels of water.

Roosevelt Dam

Where: Phoenix, Arizona—Salt River

Why It’s Unique: Italian stonemasons crafted this dam, hand-cutting all the stones for the project. In recent years, the dam’s height was raised 23 meters to increase water storage space by 20 percent, and it was completely resurfaced in concrete, changing its appearance.

Chalk Hills Dam

Where: On the Border of Wisconsin and Michigan—Menominee River

Why It’s Unique: The power house connected to this dam resembles a cathedral, complete with stained-glass windows celebrating the engineers and bankers involved in the original construction, and small multi-colored terrazzo tile. The structure was completed in 1927.

World’s Largest Beaver Dam

Where: Wood Buffalo National Park—Alberta, Canada

Why It’s Unique: Google Earth found the largest beaver dam in Alberta, Canada at 850 meters long–the closest size relative exists in Montana at 652 meters. Viewers think two beaver families constructed this massive piece of architecture, which contains two separate beaver lodges inside. The entire dam is surrounded by wetlands, common of more sizable beaver creations.

Choice of site and type of dam

Choice of site and type of dam

 

Dam types can be classified in different categories according to the material used in construction and how they withstand the thrust of water:
  • homogeneous drained earthfill dams, either zoned or with a man-made impervious element;
  • gravity dams, whether concrete or RCC;
  • arch dams;
  • and buttress or multiple arch dams (not dealt with here).
Fill dams are flexible structures while the other types are rigid.The main parameters to be taken into account in choosing a dam site and type are the following:
  • topography and inflow in the catchment area;
  • morphology of the river valley;
  • geological and geotechnical conditions;
  • climate and flood regime.
In many cases, after consideration of all these aspects, several types of dams will remain potential candidates. Economic considerations are then applied to rank the available alternatives.

1. TOPOGRAPHY AND INFLOW IN THE CATCHMENT AREA

If we ignore the case of lakes for recreational purposes and small dams for hydroelectric power generation, reservoir storage is the main factor influencing the entire dam design. The objective is in fact to have a volume of water  available for increasing dry weather river flow, irrigation or drinking-water supply, or free storage capacity to attenuate flooding.
The first task therefore consists in calculating the volume of water that can be stored in a basin, possibly at several different sites. A first approximation can be achieved using a 1/25 000 scale map with contour lines every 5 or 10 metres, except for reservoirs with storage of several tens of thousand cubic metres. The second task will then be to check whether conditions in the catchment area are such that the reservoir will be filled and to calculate the risk of shortfall.

2. MORPHOLOGY OF THE RIVER VALLEY

 

A dam is by nature linked to an environment. The morphology of the river valley therefore plays a vital role in the choice of a dam site and the most suitable type of dam.
Of course, the ideal and most economical location will be a narrow site where the valley widens upstream of the future dam, provided that the dam abutments are sound (i.e. a narrowing with no zones prone to rockfall or landslide).
Such a site is rarely found, either because the natural structure of a valley does not offer any point of narrowing or because the choice of the site is not solely dependent on engineering considerations.
As a first approach, a wide valley will be more suitable for construction of a fill dam.
A narrow site will be suitable for a gravity dam as well, and a very narrow site will be suitable for an arch. In every case, of course, provided that the foundation is acceptable.

3. GEOLOGY AND FOUNDATION CONDITIONS

The nature, strength, thickness, dip, jointing and permeability of the geological foundations at the site are a set of often decisive factors in selection of the dam type.

ROCK FOUNDATIONS

Except for severely jointed rock or rock with very mediocre characteristics, rock foundations are suitable for construction of any type of dam, provided that suitable measures are taken to strip off severely weathered materials and, if necessary, treat the foundation by grouting. Fill dams will always be suitable. For the other types, requirements are more severe for RCC, still more for conventional concrete, and finally most stringent for arch dams. The most important aspect is cracking (faults, joints, schistosity).

GRAVEL FOUNDATIONS

Provided that they are sufficiently compacted, gravel foundations are generally suitable for earth or rockfill dams, at least in terms of mechanical strength. Leakage must be controlled by suitable impervious barriers and drainage systems. In practice however, this type of foundation essentially is found on rivers with high flows. The dam must
therefore be able to discharge high floods, which precludes earthfill dams. Very small concrete dams may also be suitable provided precautions are taken with leaks and seepage (risk of piping) and with differential settlement.

SANDY-SILT FOUNDATIONS

Silt or fine sand foundations can be suitable for construction of earthfill dams, and even, in exceptional cases, for very small concrete gravity dams provided strict precautions are taken.

CLAY FOUNDATIONS

Clay foundations almost automatically impose the choice of a fill dam with slopes that are compatible with the mechanical characteristics of the geological formations.

4. AVAILABLE MATERIALS

 

Availability, on the site or near it, of suitable materials to build the dam has a considerable influence and one that is often decisive in choosing the type of dam:
  • soil that can be used for earthfill,
  • rock for rockfill or slope protection (rip-rap),
  • concrete aggregate (alluvial or crushed materials),
  • cementitious materials (cement, flyash, etc.).
If it is possible to extract the materials from the reservoir itself, reservoir storage can be increased. This also usually keeps the cost of transport and restoring borrow areas to a minimum.
As a general rule, if silty or clay soil of satisfactory quality (fines content, plasticity, condition) and quantity (1.5 times or twice the volume of fill required) is available, a dam construction alternative using homogeneous earthfill or quarry-sorted materials – setting aside the coarsest materials for the downstream shoulder – will be the most economical provided that the flood flows to be discharged are moderate.
If only a limited quantity of impermeable materials, and coarse or rockfill materials as well, is available, the possibility of a zoned earthfill dam or a rockfill dam with a watertight core can be considered. The disadvantage of this alternative is placement in zones, which is all the more complicated when the site is narrow, hindering movement of the machinery.
If only coarse materials are available, they can be used to build a homogeneous embankment with a watertight diaphragm wall built in the centre of the dam, by grouting after the fill has been placed or by an upstream watertight structure (concrete or bituminous concrete facing).
If only rockfill is available, a compacted rockfill dam with external watertight structure (geomembrane, hydraulic concrete or bituminous concrete facing) on the upstream face, will be suitable. A concrete alternative, especially RCC, can also prove to be competitive provided the foundation is good enough (rock or compact ground) with no need for excessive excavation.

5. FLOODS AND FLOOD DISCHARGE STRUCTURES

The cost of flood discharge structures depends on the hydrological characteristics of
the catchment area.
When the catchment area is large and floods are likely to be high, it may be advantageous to combine the dam and spillway functions and build an overspill dam.
On the other hand, if the spillway can be kept small, a fill dam will be preferred if all other conditions are equal.
When construction of the spillway would require significant excavation, the possibility of using the excavated materials will also be a factor in favour of building a fill dam.
When a tunnel is required for temporary diversion of the river during the work, it can usefully be incorporated into the flood discharge structures, if necessary increasing its cross-section slightly.
The choice of an RCC dam can be attractive if it is a means of shortening construction lead time and removing the risk of damage from flooding of the site before construction is complete, a risk that, with any other alternative, would mean building costly diversion or protection structures.

6. ECONOMIC CRITERIA

In many cases, the considerations set out above will be sufficient to select several types of dam as potential alternatives. For example, if the foundation is rock, loose materials are available near the site and flood flows are high, the choice will be between an RCC dam and an earthfill dam with a costly spillway.
The studies must then be pursued for these two types of dam, taking care to refine the cost estimates as the studies progress. As soon as one of the dam types seems significantly more economical, it is preferable to waste no further time on the other option.

CONCLUSIONS ON SELECTING A TYPE OF DAM

The choice of a type of dam is imposed by natural conditions in many cases, with no need for in-depth investigations. For example, if the rock substratum is at a depth of more than 5 metres, the only reasonable alternative will be a fill dam, at least for any project less than 25 metres high. In some regions, the geological context is such that
only one type of dam is usually built.
In other cases, the choice of dam type will be a compromise between different aspects – type of foundation, availability of materials in the vicinity, hydrology – to arrive at the best option economically speaking.
However, it is always an advantage to make a decision as quickly as possible, as a rule after the feasibility studies.

Railway Sleepers – Types of Sleepers

Railway Sleepers – Types of Sleepers

 

Depending upon the position in a railway track, railway sleepers may be classified as:

  1. Longitudinal Sleepers
  2. Transverse Sleepers

1. Longitudinal Sleepers

These are the early form of sleepers which are not commonly used nowadays. It consists of slabs of stones or pieces of woods placed parallel to and underneath the rails. To maintain correct gauge of the track, cross pieces are provided at regular intervals.

At present this type of sleepers are discarded mainly because of the following reasons.

  • Running of the train is not smooth when this type of sleepers is used.
  • Noise created by the track is considerable.
  • Cost is high.

2. Transverse Sleepers

Transverse sleepers introduced in 1835 and since then they are universally used. They remove the drawbacks of longitudinal sleepers i.e. the transverse sleepers are economical, silent in operation and running of the train over these sleepers is smooth. Depending upon the material, the transverse sleepers may be classified as:

  • Timber/wooden sleepers
  • Steel sleepers
  • Cast Iron Sleepers
  • Concrete Sleepers

Timber or Wooden Sleepers

The timber sleepers nearly fulfilled all the requirements of ideal sleepers and hence they are universally used. The wood used may be like teak, sal etc or it may be coniferous like pine.

The salient features of timber/wooden sleepers with advantages and disadvantages.

Advantages of Timber Sleepers

  1. They are much useful for heavy loads and high speeds
  2. They have long life of 10-12 years depending upon the climate, condition, rain, intensity, nature of traffic, quality of wood etc
  3. Good insulators and hence good for track circuited railway tracks
  4. They are able to accommodate any gauge
  5. Suitable for salty regions and coastal areas
  6. Can be used with any section of rail
  7. Can be handled and placed easily
  8. They are not badly damaged in case of derailment
  9. They are not corroded
  10. Cheaper than any other types of sleepers

Disadvantages of Timber Sleepers

  1. Liable to be attacked by vermin so, they must be properly treated before use
  2. Liable to catch fire
  3. They do not resist creep
  4. They are affected by dry and wet rot
  5. Become expensive day by day
  6. Life is shorter compare to others

Steel sleepers

They are in the form of steel trough inverted on which rails are fixed directly by keys or nuts and bolts and used along sufficient length of tracks.

Advantages of Steel Sleepers

  1. Have a useful life of 20-25 years.
  2. Free from decay and are not attacked by vermins
  3. Connection between rail and sleeper is stronger
  4. Connection between rail and sleeper is simple
  5. More attention is not required after laying
  6. Having better lateral rigidity
  7. Good scrap value
  8. Suitable for high speeds and load
  9. Easy to handle
  10. Good resistance against creep

Disadvantages of Steel sleepers

  1. Liable to corrosion by moisture and should not because in salty regions
  2. Good insulators and hence cannot be used in track circuited regions
  3. Cannot be used for all sections of rails and gauges
  4. Should not be laid with any other types of ballast except store
  5. Very costly
  6. Can badly damaged under derailments
  7. Way gauge is obtained if the keys are over driven
  8. The rail seat is weaker
  9. Having good shock absorber as there is not cushion between rail foot and ballast

Cast Iron Sleepers

They consist of two pots or plates with rib and connected by wrought iron tie bar of section of about 2″ ½”    each pot or plate is placed below each rail.  The pot is oval in shape with larger diameter 2′-0″ and smaller diameter 1′-8″ is preferred. Plate sleepers consist of rectangular plates of size about 2′ – 10′ x 1′ – 0″.

The relative advantages and disadvantages are given below.

Advantages of Cast Iron Sleepers

  1. Long life upto 50-60 years
  2. High scrape value as they can be remolded
  3. Can be manufactured locally
  4. Provided sufficient bearing area
  5. Much stronger at the rail seat
  6. Prevent and check creep of rail
  7. They are not attacked by vermin

Disadvantages Cast Iron Sleepers

  1. They are prone to corrosion and cannot be used in salty formations and coastal areas
  2. Not suitable for track circuited portions of railways
  3. Can badly damage under derailment
  4. Difficult to maintain the gauge as the two pots are independent
  5. Require a large number of fastening materials
  6. Difficult to handle and may be easily damaged
  7. Lack of good shock absorber
  8. They are expensive

Concrete sleepers

R.C.C and pre-stressed concrete sleepers are now replacing all other types of sleepers except to some special circumstances such as crossing bridges etc here timber sleepers are used. They were first of all used in France round about in 1914 but are common since 1950. They may be a twin block sleepers joined by an angle iron. It may be a single block pre-stressed type.

Advantages Concrete Sleeprs

  1. Durable with life range from 40-50 years
  2. They can be produced on large quantities locally by installing a plant
  3. Heavier than all other types thus giving better lateral stability to the track
  4. Good insulators and thus suitable for use in track circuited lines
  5. Efficient in controlling creep
  6. They are not attacked by corrosion
  7. Free from attacks of vermin and decay, suitable for all types of soils
  8. Most suitable for welded tracks
  9. Prevent buckling more efficiently
  10. Initial cost is high but proves to be economical in long run
  11. Effectively and strongly hold the track to gauge
  12. Inflammable and fire resistant

Disadvantages Concrete Sleepers

  1. Difficult to be handled
  2. Difficult to be manufactured in different sizes thus cannot be used in bridges and crossing
  3. Can be damaged easily while loading and unloading

Railway Sleepers Definition, Characteristics, Treatment

Railway Sleepers Definition, Characteristics, Treatment

 

 

1. Railway Sleepers Definition

It is a component of permanent way laid transversely under the rails and performing the following functions.

  1. To support the rails firmly and evenly
  2. To maintain the gauge of the back correctly
  3. To distribute the weight common on the rails over a sufficiently large areas of the ballast
  4. To act as an elastic medium between the rail and the ballast and to absorb the vibrations of the trains.
  5. To maintain the track at proper grads
  6. To align the rail properly

2. Characteristics of Ideal Railway Sleepers

  1. Initial cost and maintenance cost should be low
  2. They should resist weathering, corrosion, decay and other deterioration
  3. They should bear the wheel load efficiently and satisfactorily
  4. They should maintain the correct gauge
  5. They should absorb shocks or vibrations due to moving vehicles
  6. It should distribute the load properly and uniformly over the ballast
  7. Fastenings of rail with sleepers should be strong and simple
  8. They should not break while packing of ballast
  9. Weight should not be low or high

3. Types of Railway Sleepers

Depending upon the position in a railway track, sleepers may be classified as:

1.       Longitudinal Sleepers

2.       Transverse Sleepers

i.      Timber / wooden sleepers

ii.      Steel Sleepers

iii.      Cast Iron Sleepers

iv.      Concrete Sleepers

4. Treatment of Wooden Sleepers

Untreated railway sleepers are prone to attack by decay and vermin. The life of untreated wooden sleepers is thus very less. The life of untreated sleepers can be prolonged considerably by treatment. An extra life of 30-50% is estimated for treated sleepers over untreated railway sleepers.

The fibers of wood contain millions of minute cells containing juices. When these juices ferment, they lead to decay of timber. In the treatment process these juices are removed as much as possible and cells are filled with some preserving solutions may be an oil or some salt solution.

5. Railway Sleeper Density

The number of sleepers required to be placed under the track per rail length is called as its sleepers density.

It is generally given by the formula                       Sleeper density = n + x

Construction of Railway Track Methods

Construction of Railway Track Methods

 

There are three distinct methods of construction of railway track. These are:

  1. Telescopic Method
  2. Tramline Method
  3. Mechanical Method

1. Telescopic Method of Construction of Railway Track

In this method, rails, sleepers and fastenings are unloaded from the material train as close to the rail head as possible. The sleepers are carried by carts or men along the adjoining service road and spread on the ballast. The rails are then carried on pairs to the end of last pair of connected rails and linked.

To carry rails manually over a long distance is a tedious job. So certain carriers called Anderson rail. Carriers are used to carry rails to the ends of the rail head.

It can also take rails up to a head last pair linked with the help of temporary track consisting of 3″ x 3″ angle irons of the same length as rails and fastened to the sleepers.

A further consignment of the material is deposited at the advances rails head and the procedure is repeated.

2. Tramline Method Railway Track Construction

 

This method is used where tram carrier are installed for carrying earthwork or in rainy season due to difficulty in movement of cart. Some tramline is established on with a gauge of 2′-2′-6″. The basic difference between this and telescopic method lies in the conveyance and spreading of the sleepers.

The track can be assembled at more than one points simultaneously, which is the great advantage of this method. Sometimes an additional track is laid on the side of existing track for which this method is best.

3. Mechanical Method Railway Track Construction

This method is extensively used in Britain and America by using special track laying machine. There are two types of machines available.  In first type of machine, the track material carried by the material. Train is delivered at the rail head and laid in the required position by means of projecting arm or mounted on the truck nearest to the rail head. The material train moves forward on the assembled track and operation is repeated.

In the second type of machines a long cantilevered arm projecting beyond. The wagon on which is fitted. A panel of assembled track consists of pair of rail with appropriate number of sleepers on the ballast layer. This panel is conveyed by special trolley running over the wagons of material train to the jibs. It is lowered by the jib in the required position and connected to the previous panel. The track laying machine then movies forwarded and operation is repeated.

Retaining Wall with Anchors Analysis and Design Spreadsheet

Retaining Wall with Anchors Analysis and Design Spreadsheet

This spreadsheet provides the design and analysis of retaining wall with anchors.
Retaining walls with anchors shall be dimensioned to ensure that the total lateralload, Ptotal, plus any additional horizontal loads, are resisted by the horizontal component of the anchor Factored Design Load Thi, of all the anchors and the reaction, R, at or below the bottom of the wall. The embedded vertical elements shall ensure stability and sufficientpassive resistance against translation. The calculated embedment length shall be the greater of that calculated by the Designer or Geotechnical Services.

Typical design steps for retaining walls with ground anchors are as follows:

Step 1 : Establish project requirements including all geometry, external loading conditions (temporary and/ or permanent, seismic, etc.), performance criteria, and construction constraints. Consult with Geotechnical Services for the requirements.

Step 2 : Evaluate site subsurface conditions and relevant properties of the in situ soil or rock; and any specifications controlled fill materials including all materials strength parameters, ground water levels, etc. This step is to be performed by Geotechnical Services.

Step 3 : Evaluate material engineering properties, establish design load and resistance factors, and select level of corrosion protection. Consult with Geotechnical Services for soil and rock engineering properties and design issues.

Step 4 : Consult with Geotechnical Services to select the lateral earth pressure distribution acting on back of wall for final wall height. Add appropriate water, surcharge, and seismic pressures to evaluate total lateral pressure. Check stability at intermediate steps during contruction. Geotechnical numerical analysis may be required to simulate staged construction. Consult Geotechnical Services for the task, should it be required.

Step 5 : Space the anchors vertically and horizontally based upon wall type and wall height. Calculate individual anchor loads. Revise anchor spacing and geometry if necessary.

Step 6 : Determine required anchor inclination and horizontal angle based on right-of-way limitations, location of appropriate anchoring strata, and location of underground structures.

Step 7 : Resolve each horizontal anchor load into a vertical force component and a force along the anchor.

Step 8 : Structure Design checks the internal stability and Geotechnical Services checks the external stability of anchored system. Revise ground anchor geometry if necessary.

Step 9 : When adjacent structures are sensitive to movements Structure Design and Geotechical Services shall jointly decide the appropriate level and method of analysis required. Revise design if necessary. For the estimate of lateral wall movements and ground surface settlements, geotechnical numerical analysis is most likely required. Consult with Geotechnical Services for the task, should it be required.

Step 10 : Structure Design analyzes lateral capacity of pile section below excavation subgrade.
Geotechnical Services analyzes vertical capacity. Revise pile section if necessary.

Step 11 : Design connection details, concrete facing, lagging, walers, drainage systems, etc.
Consult with Geotechnical Services for the design of additional drainage needs.

Step 12 : Design the wall facing architectural treatment as required by the Architect.

Download Link

Excel Construction Management Templates

Excel Construction Management Templates

 

Excel Construction Management Templates are very important for managers as it’s very difficulit to manage construction projects. they Require alot of stakeholders, details and documentation. So we provide more than 15 free excel construction management templates to download and use themthe templates involve :
  • Construction Timeline
  • Construction Budget
  • Construction Estimator
  • Bid Tabulation Template
  • Abstract of Bids Template
  • Subcontractor Documentation Tracker
  • Construction Documentation Tracker
  • Daily/Weekly Inspection Report
  • Contractor Progress Payment Template
  • Change Order Request Summary
  • Change Order Log
  • Request for Information Log
  • Residential Remodel Project Timeline
  • Certified Wage & Hour Payroll Form
  • Time & Materials Invoice
  • Project Punchlist
  • Project Closeout Checklist
  • Construction Management with Smartsheet

Download link

error: Content is protected !!
Exit mobile version