Pavement Defects and Failures You Should Know!

Pavement Defects and Failures You Should Know!

 

Pavement deterioration is the process by which distress (defects) develop in the pavement under the combined
effects of traffic loading and environmental conditions.

I. Types of pavement deterioration:

The four major categories of common asphalt pavement surface distresses are:
1.Cracking
2.Surface deformation
3.Disintegration (potholes, etc.)
4.Surface defects (bleeding, etc.)

1.Cracking:

The most common types of cracking are:
a.Fatigue cracking
b.Longitudinal cracking
c.Transverse cracking
d.Block cracking
e.Slippage cracking
f.Reflective cracking
g.Edge cracking
a. Fatigue cracking (Alligator cracking):
Fatigue cracking is commonly called alligator cracking. This is a series of interconnected cracks creating small, irregular shaped pieces of pavement. It is caused by failure of the surface layer or base due to repeated traffic loading (fatigue). Eventually the cracks lead to disintegration of the surface, as shown in Figure. The final result is potholes. Alligator cracking is usually associated with base or drainage problems. Small areas may be fixed with a patch or area repair. Larger areas require reclamation or reconstruction. Drainage must be carefully examined in all cases.
b. Longitudinal cracking:
Longitudinal cracks are long cracks that run parallel to the center line of the roadway. These may be caused by frost heaving or joint failures, or they may be load induced. Understanding the cause is critical to selecting the proper repair. Multiple parallel cracks may eventually form from the initial crack. This phenomenon, known as deterioration, is usually a sign that crack repairs are not the proper solution.
c. Transverse cracking :
Transverse cracks form at approximately right angles to the centerline of the roadway. They are regularly spaced and have some of the same causes as longitudinal cracks. Transverse cracks will initially be widely spaced (over 20 feet apart). They usually begin as hairline or very narrow cracks and widen with age. If not properly sealed and maintained
, secondary or multiple cracks develop, parallel to the initial crack. The reasons for transverse cracking, and the repairs, are similar to those for longitudinal cracking. In addition, thermal issues can lead to low- temperature cracking if the asphalt cement is too hard. Figure shows a low-severity transverse crack.
d. Block cracking:
Block cracking is an interconnected series of cracks that divides the pavement into irregular pieces.
This is sometimes the result of transverse and longitudinal cracks intersecting. They can also be due to lack of
compaction during construction. Low severity block cracking may be repaired by a thin wearing course. As the
cracking gets more severe, overlays and recycling may be needed. If base problems are found, reclamation or reconstruction may be needed. Figure shows medium to high severity block cracking.
e.Slippage cracking:
Slippage cracks are half-moon shaped cracks with both ends pointed towards the oncoming vehicles.

They are created by the horizontal forces from traffic. They are usually a result of poor bonding between the

asphalt surface layer and the layer below .The lack of a tack coat is a prime factor in many cases. Repair requires removal of the slipped area and repaving. Be sure to use a tack coat in the new pavement.
f. Reflective cracking:
Reflective cracking occurs when a pavement is overlaid with hot mix asphalt concrete and cracks reflect up through the new surface. It is called reflective cracking because it reflects the crack pattern of the pavement structure below. As expected from the name, reflective cracks are actually covered over cracks reappearing in the surface. They can be repaired in similar techniques to the other cracking noted above. Before placing any overlays or wearing courses, cracks should be properly repaired.
g. Edge cracking:
Edge cracks typically start as crescent shapes at the edge of the pavement. They will expand from the edge until they begin to resemble alligator cracking. This type of cracking results from lack of support of the shoulder due to weak material or excess moisture. They may occur in a curbed section when subsurface water causes a weakness in the pavement. At low severity the cracks may be filled. As the severity increases, patches and replacement of distressed areas may be needed. In all cases, excess moisture should be eliminated, and the shoulders rebuilt with good materials. Figure shows high severity edge cracking.

2. Surface deformation:

Pavement deformation is the result of weakness in one or more layers of the pavement that has experienced movement after construction. The deformation may be accompanied by cracking. Surface distortions can be a
traffic hazard.
The basic types of surface deformation are:
a.Rutting
b.Corrugations
c.Shoving
d.Depressions
e.Swell
a. Rutting
Rutting is the displacement of pavement material that creates channels in the wheel path. Very severe rutting will actually hold water in the rut. Rutting is usually a failure in one or more layers in the pavement. The width of the rut is a sign of which layer has failed. A very narrow rut is usually a surface failure, while a wide one is indicative of a subgrade failure. Inadequate compaction can lead to rutting. Figure shows an example of rutting due to subgrade Failure. Minor surface rutting can be fille d with micropaving or paver-placed surface treatments. Deeper ruts may be shimmed with a truing and leveling course, with an overlay placed over the shim. If the surface asphalt is unstable, recycling of the surface may be the best option. If the problem is in the subgrade layer, reclamation or reconstruction may be needed.
b. Corrugation
Corrugation is referred to as wash boarding because the pavement surface has become distorted like a washboard. The instability of the asphalt concrete surface course may be caused by too much asphalt cement, too much fine aggregate, or rounded or smooth textured coarse aggregate. Corrugations usua lly occur at places where vehicles accelerate or decelerate. Minor corrugations can be repaired with an overlay or surface milling.
Severe corrugations require a deeper milling before resurfacing.
c. Shoving
Shoving is also a form of plastic movement in the asphalt concrete surface layer that creates a localized bulging of the pavement. Locations and causes of shoving are similar to those for corrugations. Figure shows an example of shoving. Repair minor shoving by removing and replacing. For large areas, milling the surface may be required, followed by an overlay.
d. Depressions
Depressions are small, localized bowl-shaped areas that may include cracking. Depressions cause
roughness, are a hazard to motorists, and allow water to collect. Depressions are typically caused by localized
consolidation or movement of the supporting layers beneath the surface course due to instability. Repair by
excavating and rebuilding the localized depressions. Reconstruction is required for extensive depressions.
e. Swell
A swell is a localized upward bulge on the pavement surface. Swells are caused by an expansion of the supporting layers beneath the surface course or the subgrade. The expansion is typically caused by frost heaving or by moisture. Subgrades with highly plastic clays can swell in a manner similar to frost heaves (but usually in warmer months). Repair swells by excavating the inferior subgrade material and rebuilding the removed area.
Reconstruction may be required for extensive swelling.

3. Disintegration

The progressive breaking up of the pavement into small, loose pieces is called disintegration. If the isintegration is not repaired in its early stages, complete reconstruction of the pavement may be needed.
The two most common types of disintegration are:
a.Potholes
b.Patches
a. Potholes
Potholes are bowl-shaped holes similar to depressions. They are a progressive failure. First, small fragments of the top layer are dislodged. Over time, the distress will progress downward into the lower layers of the pavement. Potholes are often located in areas of poor drainage, as seen in Figure. Potholes are formed when the pavement disintegrates under traffic loading, due to inadequate strength in one or more layers of the pavement, usually accompanied by the presence of water. Most potholes would not occur if the root cause was repaired before development of the pothole. Repair by excavating and rebuilding. Area repairs or reconstruction may be required for extensive potholes.
b. Patches:
A patch is defined as a portion of the pavement that has been removed and replaced. Patches are usually used to
repair defects in a pavement or to cover a utility trench. Patch failure can lead to a more widespread failure of the surrounding pavement. Some people do not consider patches as a pavement defect. While this should be true for high quality patches as is done in a semipermanent patch, the throw and roll patch is just a cover. The underlying cause is still under the pothole. To repair a patch, a semi-permanent patch should be placed.
Extensive potholes may lead to area repairs or reclamation. Reconstruction is only needed if base problems are
the root source of the potholes.

4. Surface defects:

Surface defects are related to problems in the surface layer. The most common types of surface distress are:
a.Ravelling
b.Bleeding
c.Polishing
d.Delamination
a. Ravelling:
Ravelling is the loss of material from the pavement surface. It is a result of insufficient adhesion between the asphalt cement and the aggregate. Initially, fine aggregate breaks loose and leaves small, rough patches in the surface of the pavement. As the disinteg ration continues, larger aggregate breaks loose, leaving rougher surfaces. Ravelling can be accelerated by traffic and freezing weather. Some ravelling in chip seals is due to improper construction technique. This can also lead to bleeding. Repair the problem with a wearing course or anoverlay.
b. Bleeding:
Bleeding is defined as the presence of excess asphalt on the road surface which creates patches of asphalt
cement. Excessive asphalt cement reduces the skid-resistance of a pavement, and it can become very slippery
when wet, creating a safety hazard. This is caused by an excessively high asphalt cement content in the mix,
using an asphalt cement with too low a viscosity (too flowable), too heavy a prime or tack coat, or an improperly applied seal coat. Bleeding occurs more often in hot weather when the asphalt cement is less viscous (more flowable) and the traffic forces the asphalt to the surface. Figure 13 shows an example of bleeding during hot weather.
c. Polishing:
Polishing is the wearing of aggregate on the pavement surface due to traffic. It can result in a dangerous low friction surface. A thin wearing course will repair the surface.

II. CAUSES OF PAVEMENT DETERIORATION

 

  1. Sudden increase in traffic loading especially on new roads where the design is based on lesser traffic is major of craking. After construction of good road, traffic of the other roads also shifts to that road. This accelerates the fatigue failure (Alligator Cracking).
  2. Temperature variation ranging from 50°C to below zero conditions in the plain areas of North and Central India leads to bleeding and cracking.
  3. Provision of poor shoulders leads to edge failures.
  4. Provision of poor clayey subgrade results in corrugation at the surface and increase in unevenness.
  5. Poor drainage conditions especially durinng rainy seasons, force the water to enter the pavement from the sides as well as from the top surface. In case of open graded bituminous layer, this phenomenon becomes more dangerous and the top layer gets detached from the lower layers.
  6. If the temperature of bitumen/bituminous mixes is not maintained properly, the it also leads to pavement failure. Over heating of bitumen reduces the binding property of bitumen. If the temperature of bituminous mix has been lowered down the the compaction will not be proper leading to longitudinal corrugations.

 

Morandi is the fifth bridge to collapse in Italy in five years

Morandi is the fifth bridge to collapse in Italy in five years

 

Photos from Google Maps taken two years the before the bridge caved in appear to show spot repairs to the concrete, but engineers said the cause of the collapse was more likely to be structural.

A photo shared on Twitter purportedly from the last few weeks also seemed to show issues with the structure — although the image is thought to be from several years ago.

The bridge underwent significant maintenance in the 1980s and 1990s as well as repair works last year and more work was being done on its foundations before the collapse.

An Italian engineering professor appeared to predict the Morandi Bridge disaster two years ago, warning that the bridge was “wrong” and had “errors” and saying it would be cheapest to simply tear it down and rebuild.

Witnesses reported seeing it hit by lightning in a storm just before it collapsed, but experts also dismissed the idea this would be behind the disaster.

Morandi is the fifth bridge to collapse in Italy in five years, according to Corriere Della Sera.

Photos of Morandi bridge before the collapse show black patches believed to be spot repairs to the concrete. Picture: Google MapsSource:Supplied

There were warnings about problems with the structure well before it crumbled. Picture: Google MapsSource:Supplied

Questions have been raised as to whether the Mafia was involved in the bridge’s construction in the 1960s. “Mafia-related companies are known to have infiltrated the cement and reconstruction industries over the decades and prosecutors have accused them of doing shoddy work that cannot withstand high stress,” reported Canada’s Globe and Mail.

In December 2012, the Genoa city council discussed the state of the bridge at a public hearing and a local industry official spoke of its collapse “in 10 years”, according to the BBC.

Italian prime minister Giuseppe Conte on Wednesday declared a state of emergency covering the region around Genoa.

Deputy prime minister Luigi Di Maio said the tragedy “could have been avoided” and blamed operator Autostrade per l’Italia for not carrying out maintenance. The Italian government said it intended to fine the firm $240 million and cancel its licence.

The company insisted it had monitored the bridge quarterly, as required by law.

Transport Minister Danilo Toninelli said it was “unacceptable” and that “whoever made a mistake must pay”, assuming negligence was the cause. He called on the top management of Autostrade per L’Italia to resign.

But Italian media has also pointed to Mr Tonelli’s comments two weeks ago appearing to oppose a major infrastructure project in the area that his deputy Edoardo Rixi said was fundamental.

 

Questions have been raised as to whether the Mafia could have been involved in the bridge’s construction in the 1960s. Picture: Luca Zennaro/ANSA via APSource:AP

The bridge on a main highway linking Italy with France collapsed during a storm, sending 45 vehicles plunging 45 metres into a heap of rubble below. Picture: Luca Zennaro/ANSA via APSource:AP

DIRE PREDICTION

In 2016, Antonio Brencich, associate professor of civil engineering at the University of Genoa, warned it would cost more to repair the “uneven” construction, rather than just knock the bridge down.

He said maintenance costs “are so exorbitant that it would be cheaper to build a new one”.

“The Morandi Bridge is referred to as a masterpiece of engineering. In reality it is a bankruptcy,” he said in an interview with Italian TV channel primocanale.it. “That bridge is wrong. Sooner or later it will have to be replaced. I do not know when.

“But there will be a time when maintenance costs will exceed those of reconstruction, and then we will have to proceed with the replacement.”

In December 2016, Genoan newspaper Il Secolo XIX claimed bridge restorations were underfunded because authorities “preferred to allocate more funds to new works”.

In a statement following the incident, Italy’s motorway operator Autostrade said the bridge “dates back to the 1960s” and “maintenance works were under way to consolidate it”.

It went on to say that “a bridge-crane was installed to allow maintenance works to be carried out”, adding that “the work and status of the viaduct were subject to constant observation and supervision” by their Genoa division.

“The causes for the collapse will be the subject of an in-depth analysis as soon as it is possible to safely access the site,” the company said.

Genoa Mayor Marco Bucci told CNN the bridge collapse was “not absolutely unexpected”.

“(It’s a) very bad time with the collapsing of the bridge which was not absolutely unexpected. But we don’t know the reason,” he said.

“My role as the mayor is to make sure we have the correct infrastructure for the city and make sure that from the government we get the right amount of money in order to be able to set up the new infrastructure as soon as possible.”

To be continued…

What we know about Genoa bridge that collapsed

What we know about Genoa bridge that collapsed

 

The Monrandi bridge in Genoa, Italy is part of the A10 motorway which runs runs over a railway line, riverbed and industrial area.

The road which is close to the French boarder connects the city of Genoa to Savona and Ventimiglia.

Both sides of the highway fell due to severe weather and torrential rain sending cars plummeting to the ground.

It is currently unclear why a section of the Morandi Bridge collapsed. But here’s what do we know about structure:

  • It’s a highway bridge: The section of the A10 highway affected crosses over several roads, railway tracks, shopping centers, homes and the Polcevera river.
  • It’s a major thoroughfare: It links central Genoa with Genoa airport and towns along the coast to the west of the city.
  • It’s long (and tall): The cable-stayed bridge had a total length of 1.1 kilometers and is 100 meters tall at its highest point.
  • It’s 50 years old: The bridge, also known as the Polcevera Viaduct, was designed by Italian civil engineer Riccardo Morandi and completed in 1968.

The bridge was undergoing maintenance when it collapsed

The bridge that collapsed near Genoa, Italy, was undergoing maintenance, the company in charge of Italian highways, Autostrade, said in a statement on Tuesday.

The Morandi Bridge “dates back to the 1960s” and “maintenance works were underway to consolidate it,” Autostrade said

The statement goes on to say that “a bridge-crane was installed to allow maintenance works to be carried out” adding that, “the work and status of the viaduct were subject to constant observation and supervision” by their Genoa division.

The company added: “The causes for the collapse will be the subject of an in-depth analysis as soon as it is possible to safely access the site.”

Dramatic pictures show the collapsed bridge as rescue workers search the debris.

Emergency services having been working around the clock at the scene.

Italian firefighters said cars and trucks are trapped among the rubble after falling 50 meters to the ground from the Monrandi bridge.

 

Autodesk Roadway Design for InfraWorks 360 Essentials

Autodesk Roadway Design for InfraWorks 360 Essentials

Autodesk Roadway Design for InfraWorks 360 Essentials, 2nd Edition allows you to begin designing immediately as you learn the ins and outs of the roadway-specific InfraWorks module. Detailed explanations coupled with hands-on exercises help you get up to speed and quickly and become productive with the module’s core features and functions. Compelling screenshots illustrate step-by-step tutorials, and the companion website provides downloadable starting and ending files so you can jump in at any point and compare your work to the pros.

  • Master the Roadway tools that go beyond the base software
  • Create new designs and add detail with step-by-step tutorials
  • Use the powerful module-specific analysis and optimization functions
  • Import and work with real-world data to quickly become productive

If you are looking for a guide that will get you up and designing right away, Autodesk Roadway Design for InfraWorks 360 Essentials, 2nd Edition is the easy-to-follow roadmap to Roadway Design mastery.

Download Link

Autodesk InfraWorks and InfraWorks 360 Essentials: Autodesk Official Press

Autodesk InfraWorks and InfraWorks 360 Essentials: Autodesk Official Press

Your guide to quickly learning InfraWorks Autodesk InfraWorks Essentials is a complete, hands–on tutorial for InfraWorks, the powerful design tool that lets you quickly generate 3D models to create infrastructure designs and proposals. This Autodesk Official Press book shows you the right way to take advantage of versatile InfraWorks features. From creating models in the context of the existing environment to crafting stunning proposals, you′ll become comfortable with every step of the design process. After working through this start–to–finish tutorial, you′ll be able to productively use InfraWorks for civil project design that′s fully integrated with existing real–world characteristics. In Autodesk InfraWorks Essentials , you′ll learn everything you need for everyday design projects. 360 full–color pages full of screenshots and illustrations Detailed step–by–steps on importing GIS and other data Create roadways, buildings, railways, and more Learn how to use the powerful Styles feature Download before and after files, so you can start anywhere This is the perfect tutorial for using InfraWorks to quickly create infrastructure designs, win project bids, speed up the approval process, and collaborate remotely across platforms.

 

Download Link

Tekla Structures for reinforced concrete Tutorial

Tekla Structures for reinforced concrete Tutorial

 

Tekla BIM software is revolutionising the concrete detailing process, enabling users to produce fully reinforced 3D models with construction level of detail and all associated documentation. By modelling all details in the 3D model, all drawings and schedules are fully coordinated with this single source of truth and updated as changes are made. In this video, Paul Walker of Tekla UK demonstrates the benefits of Tekla for rebar detailing. Mirroring a typical workflow, he uses an IFC model from Autodesk Revit to establish the concrete geometry and converts the IFC objects to native Tekla elements. Paul then demonstrates how to detail the converted objects and produce the associated drawings and rebar schedules.

Up and Running with Civil 3D

Up and Running with Civil 3D

 

Great engineering projects begin with Civil 3D. Learn to get up and running with this powerful CAD program in these tutorials, with author Jon Michael Roberts. Discover how important it is to set up Civil 3D properly to streamline drafting tasks, plot styles, and establish design criteria for your particular organization. Jon then shows designers the differences they can expect to see between AutoCAD and Civil 3D, and the different design options Civil 3D offers. The final three chapters are dedicated to grading, laying a driveway, and creating a pipe network to an example single-family home.

China finalises design of 135km Taiwan rail tunnel

China finalises design of 135km Taiwan rail tunnel

 

Chinese engineers have finalised a method for building the world’s longest transport tunnel: a 135km link connecting Taiwan with the mainland.

Any live project would depend on a radical change in the international situation – relations between Beijing and Taipei are in the freezer following the election victory of Tsai Ing-wen and the pro-independence Democratic Progressive party in 2016. However, the People’s Republic is planning to have everything in place ready to begin the project when it becomes politically possible.

It would also depend on the two countries’ finding the cost of the scheme, which has been given a speculative cost estimate of $80bn.

According to the South China Morning Post, Chinese engineers are proposing a “warm-up” project to make sure China has the capabilities to tackle what would be one of the most ambitious civil engineering projects of the 21st century.

It is also possible that Beijing will make a symbolic start work on the project without any agreement from the other side of the Formosa Strait .

The idea of a tunnel has been under discussion throughout the 20th century, without any solution emerging for the formidable problems it would face as it cut through complex layers of rock, including granite, and crossed two seismic faults zones.

Possible routes for the tunnel. The Chinese are presently working on the northernmost option (Creative Commons)

The Chinese solution, completed last year with funding from the Chinese Academy of Engineering, would involve sinking the tunnel at least 200m below the surface.

The idea of a link achieved prominence in 2016, when Beijing included the “Beijing–Taipei expressway and rail link” in its 13th five-year plan.

The declaration triggered an emergency session of the Taiwanese legislature and a statement by the Taiwanese government rejecting the idea.

This was followed by a statement from Wang Mengshu, a prominent Chinese railway engineer, claiming that he had been holding secret discussions over the project with his Taiwanese counterparts for a decade, and that then Taiwanese president Ma Ying-jeou, approved of them.

Top image: In the 2016-20 national plan, China proposed extending its high-speed rail system to Taiwan (Alancrh/Creative Commons)

http://www.globalconstructionreview.com

Virgin Hyperloop announces $500m testing centre in Andalucia

Virgin Hyperloop announces $500m testing centre in Andalucia

 

Virgin Hyperloop One has signed an agreement with Spain to build a $500m Advanced Technology Development and Testing Centre in the Andalusia.

 

The facility, which will be the company’s first in Europe, will be partly financed by $146m in public aid through loans and grants on the grounds that the development will stimulate regional economic growth and job creation.

Rob Lloyd, Virgin Hyperloop’s chief executive, said: “By investing in the development and testing of Virgin Hyperloop One, Spain is extending its long-tradition as an innovative, global transport leader. We are excited to partner with such a forward-thinking country in developing the next generation of transportation.”

The plant will be built in the village of Bobadilla in the province of Malaga, part of a cluster of aerospace cluster in Spain. Virgin Hyperloop estimates that it will hire 200-300 technicians.

The plan is to open the 19,000-sq-m in 2020, after which it will work on developing, testing and certifying components and subsystems.

Image: Virgin Hyperloop is part of a global race to bring vacuum maglev technology to market

http://www.globalconstructionreview.com

Roads Paved with Plastic Bottles: Making Use of an Ecological Threat

Roads Paved with Plastic Bottles: Making Use of an Ecological Threat

 

Rotterdam in the Netherlands may become the first city to repurpose one of Earth’s biggest pollutants by paving its streets with plastic bottles. The Rotterdam City Council is working out a way to efficiently pilot a new type of plastic road surface since their initial declaration in 2015.

The concept raises some concerns. Heat on all-plastic surface may be a problem, as plastic, just like asphalt, can soften under higher temperatures. And the engineers behind the project are working to ensure that the roads are capable of withstanding both the heat and the abuse from constant traffic.

VolkerWessels, a European construction firm, addressed concerns by creating and testing a surface made entirely from plastic. Results suggest that the surface required less maintenance than typical road surfaces and could even withstand extreme temperatures of -40°C to 80°C (-40°F to 176°F).

A Plastic Road Hybrid with Roots in India

While the process is still ongoing in the Netherlands, a UK start-up called MacRebur is succeeding in persuading local councils to use plastic to pave new roads. Cumbria in northwest England has become the first county to turn its local waste into roads.

The project began in a small farmhouse in Lockerbie, Scotland, led by the plastic-road pioneer Toby McCartney.

“We use waste plastics to add into an asphalt mix to create a stronger, longer-lasting pothole free road,” Mr. McCartney says.

Mr. McCartney’s idea came about during his trip to India, where he witnessed the locals pouring plastic into the potholes. The plastic was then burnt into the potholes and smoothed over, fixing the holes and at the same time, making use of the plastic waste. Mr. McCartney left India inspired. But he didn’t act on the idea until until later, back home, when he heard the response his daughter gave when her school teacher asked what lived in our oceans. She said “plastics, miss.” And Mr. McCartney sought to make a change.

How is it done?

The secret lies in a mixture of plastic pellets, but the details are proprietary.

“I give the analogy of Irn Bru, we will never tell anyone what is actually in our mix,” Mr. McCartney says.

Normally, roads are comprised of about 90 percent rocks, limestone and sand, with roughly 10% bitumen used to bind it. Bitumen is extracted from crude oil. The plastic pellets replace a significant part of the bitumen, and can be made from household waste, and commercial waste.

Mr. McCartney regularly receives large bundles of waste, most of which is destined to end up in landfill, or is thrown into the incinerator. The waste plastic however, is processed into millions of pellets at an asphalt plant, where bags of pellets are mixed with quarried rock and bitumen. The result is a road that repurposes plastic waste and lasts longer and costs less than typical roads , Mr. McCartney says.

Can Plastic-Eating Caterpillars Cause Chaos?

The strangest dilemma the might roads face isn’t from the heat, or the weight of the cars. Instead, it may come in the form of hungry caterpillars.

The question arose while researching the possible hazards linked to this innovation in road materials. Plastic-eating caterpillars are a blessing, as their ability to eat through plastic could eventually solve some plastic waste issues. But could they also eat through plastic roads?

Experimenters at Cambridge have discovered that the caterpillars ‘can break down the chemical bonds of plastic in a similar way to digesting beeswax.’ Dr Paolo Bombelli – a scientist as Cambridge University believes that the caterpillars are just the starting point and that “we need to understand the details under which this process operates.”

Alan Read, owner of Ames Pest Control believes that the caterpillars aren’t strong enough to eat through the roads, however:

“The roads look as if they go through multiple safety tests and chemical transformations before being laid onto the roads. Even if thousands of these caterpillars were to focus on eating through one particular section, it would take months, if not years to make a dent. There really is no cause for concern.”

A Bright Future for the Use of Plastic

Either way, with plastic-eating caterpillars and plastic-infused roads slowly making their appearance in contemporary society, it only looks good for the future of our eco-system.

Home

error: Content is protected !!
Exit mobile version