Bentley PowerCivil for Middle East V8i (SELECTseries 4)

Bentley PowerCivil for Middle East V8i (SELECTseries4)

 

Access 3D modeling, construction-driven engineering, and analysis all in one application. Localized for more than 22 countries, PowerCivil for “Country” ensures you have the standards you need for your region, improves design quality, and reduces production time. PowerCivil helps you improve design quality by combining traditional engineering workflows of plan, profile, and cross-sections with innovative 3D modeling technology based on parametric relationships and constraints.

Download Link

ADAPT Builder 2015.0 v1.0.0.4065 x86/x64

ADAPT Builder 2015.0 v1.0.0.4065 x86/x64

ADAPT-Builder Platform – ADAPT-Builder is the 3D modeling, analysis and design platform for ADAPT-Edge, Floor Pro, Modeler, MAT and SOG, and can be used together with ADAPT-PT and RC.
ADAPT-Edge -Full Building Structural Model ADAPT-Edge: ADAPT-Edge is our new structural analysis solution for full concrete buildings. ADAPT-Edge works as a stand-alone product or integrated with Floor Pro or MAT, offering the only fully integrated solution capable of detailed floor / foundation system design and building structural analysis for gravity and lateral loads.

Download Link:

https://drive.google.com/open?id=1bRs_uSVgWLLAt40np1KCLf53-wWchhvn

 

Béton armé – Guide de calcul

Béton armé – Guide de Calcul

 

Ce guide présente les connaissances de base indispensables à la détermination des sections d’armatures des ouvrages élémentaires d’une structure porteuse. Il traite également des méthodes de vérification des contraintes du béton et de l’acier dans une section fléchie.

Sommaire:

  • Calcul du béton arme aux états limites
    • Notions d’états limites
    • Etats limites ultimes et états limites de service
    • Principes généraux des justifications
    • E.L.U. ou E.L.S. ?
  • Formulaire des poutres
    • Notations et conventions du formulaire des poutres
    • Formulaire des poutres
    • Mode d’utilisation du formulaire
  • Caractéristiques géométriques des sections
    • Moment statique (rappels)
    • Moment quadratique (rappels)
    • Tableau des caractéristiques des sections courantes
    • Section en forme de Te
    • Application aux sections courantes de béton arme
  • Actions permanentes et variables
    • Nature des actions
    • Evaluation des charges permanentes
    • Evaluation des charges d’exploitation
    • Application : calcul d’une descente de charges
  • Calcul des sollicitations
    • Principe
    • Combinaisons d’actions
    • Applications
  • Bétons et aciers : caractéristiques
    • Les bétons
    • Les aciers
  • Déformations et contraintes de calcul
    • Etat limite de résistance
    • Etat limite de service
  • Semelles de fondations
    • Sollicitations de calcul
    • Prédimensionnement des semelles
    • Détermination des aciers tendus
    • Tableau d’arrêt pratique des barres des semelles et attentes
  • Poteaux : compression centrée
    • Notations et rappels
    • Hypothèses d’études
    • Calcul des armatures longitudinales
    • Dispositions constructives
    • Application
  • Tirants : traction simple
    • Hypothèses d’études
    • Contraintes de calcul
    • Détermination des sections d’armatures
    • Dispositions réglementaires minimales
  • E.L.U.R. : flexion simple
    • Hypothèses d’études
    • Contraintes de calcul
    • Combinaisons
    • Calcul de sollicitations
    • Conditions d’équilibre d’une section rectangulaire
    • Moment critique ultime
    • Moment critique réduit
    • Calcul des armatures longitudinales tendues
  • E.L.S. : flexion simple
    • Hypothèses d’études
    • Contraintes de calcul
    • Combinaisons d’actions
    • Calcul des sollicitations
    • Conditions d’équilibre d’une section rectangulaire
    • Moment limite de service
    • Moment limite réduite de service
    • Calcul des armatures longitudinales tendues
  • Vérification des sections
    • Hypothèses de calcul
    • Caractéristiques géométriques
    • Expression de la contrainte normale au niveau d’une fibre
  • Liaisons béton – acier
    • Contrainte d’adhérence
    • Ancrage des aciers
    • Entraînement des barres isolées ou en paquet
  • Effort tranchant : justifications et dispositions constructives
    • Contrainte tangente conventionnelle
    • Contrainte tangente limite ultime
    • Armatures d’une poutre
    • Dispositions constructives minimales
    • Effort tranchant réduit au voisinage d’un appui
    • Justifications aux appuis
    • Cas des dalles
  • Micro-projet Bâtiment
    • Etude demandée
    • Valeurs caractéristiques et valeurs de calcul des matériaux
    • Calcul des éléments porteurs
    • Calcul des panneaux de dalles rectangulaires sous chargement modéré uniforme
  • Annexes
    • Caractéristiques des aciers
    • Contraintes limites des matériaux à l’E.L.S.
    • Moments critiques réduits
    • Tableaux de calcul à l’E.L.U.R.
    • Tableaux de calcul à l’E.L.S.

Lien de téléchargement:

https://drive.google.com/open?id=1vKlap0pQX3mK6kBNrjM4YTMN17i9PNok

 

Calcul des structures métalliques selon l’Eurocode 3

Calcul des structures métalliques selon l’Eurocode 3

 

Avant 1993, la conception et le calcul des constructions métalliques étaient régis par diverses réglementations. Aujourd’hui, une nouvelle norme européenne est entrée en vigueur et impose, en remplacement des précédents textes, un texte unique : l’Eurocode 3.

Cet ouvrage se présente comme :

  • un traité théorique qui regroupe les calculs fondamentaux des structures en acier, à partir des données fondamentales de la résistance des matériaux et de la mécanique des solides
  • un traité pratique qui comporte systématiquement des applications et des exemples de calculs détaillés de pièces ou d’ouvrages établis sur la base du nouveau règlement européen Eurocode 3
  • un support pédagogique pour l’enseignement, les écoles d’ingénieurs, IUT, BTS, les écoles d’architecture
  • un outil de travail et de réflexion pour les professionnels de la construction
  • un guide pratique qui souligne les points et les dispositions exigeant une attention toute particulière qui met en garde contre les risques et les désordres encourus, notamment en ce qui concerne les assemblages et les phénomènes d’instabilité (flambement, déversement, voilement) qui demeurent des pôles névralgiques de toutes constructions métalliques

Lien de téléchargement:

https://drive.google.com/open?id=1gKuDvrlY_Jo9noQnQ9DktNWFAmvmaGD-

 

Microsoft Project 2016 Essential Training

Microsoft Project 2016 Essential Training

 

Master the core features of Microsoft® Project 2016, the powerful project management software. Learn how to best set up such project components as work tasks, summary tasks, milestones, and recurring tasks. Author Bonnie Biafore, a Project Management Professional (PMP)®, also explores the different types of resources used in projects, and how to set up their availability and cost. She also shows how to link tasks together and assign resources to tasks to build a realistic project schedule. Finally, the course explains how to use Project 2016 to help evaluate your schedule and resource workloads to make sure you’re bringing a project in on time and within budget. Bonnie also shows how to use the new features in Project 2016, such as multiple timelines and the “Tell me what you want to do” field.
NOTE: This course updates our Microsoft Project 2013 Essential Training course for Project 2016, and most videos will work with both versions of the software. For Microsoft Project 2010 compatibility, see Project 2010 Essential Training.
Lynda.com is a PMI Registered Education Provider. This course qualifies for professional development units (PDUs). To view the activity and PDU details for this course, click here.
The PMI Registered Education Provider logo is a registered mark of the Project Management Institute, Inc.
Topics include:
Choosing the right Project editionCreating and saving projectsSetting up calendarsCreating individual and recurring tasksLinking and timing tasksAssigning tasks to resourcesViewing your data differently with sorting, grouping, and filteringFine-tuning the project scheduleUnderstanding baseline, schedule, and actual valuesReporting on the project statusSharing projects

Download Link:

https://drive.google.com/open?id=1HsTsYiQ-UIJ0kWewac3Vdwxi1VbPvYen

 

ZwCAD Software ZW3D 2018 v22.00 x86/x64

ZwCAD Software ZW3D 2018 v22.00 x86/x64

 

ZW3D is a comprehensive CAD/CAM software that enables professionals to complete product designs within an integrated and collaborative environment.

Supported by its Show-n-Tell built-in learning system, ZW3D includes data exchange to allow efficient reuse and sharing of designs, hybrid modeling with its unique Overdrive kernel, mold and die design with cavity preparation tools and component libraries, and intelligent, adaptive CNC machining from 2-axis through to 5-axis.

Industries served by ZW3D include consumer products, automotive, machine design, mold & die, medical, CNC machining, and many more.

 

Operating System:
Microsoft® Windows XP SP3 (32 bit)
Microsoft® Windows 2003 Server (32 bit)
Microsoft® Windows 2008 Server (32 bit)
Microsoft® Windows Vista (32 bit)
Microsoft® Windows 7 (32 bit /64 bit)
Microsoft® Windows 8.1 (32 bit /64 bit)
Microsoft® Windows 10 (32 bit /64 bit)

Processor :
Intel Core 2 Duo @2GHz or above, or equivalent AMD® processor

RAM :
Recommended configuration: 4G or above

Video :
OpenGL 3.1 or above
nVIDIA Quadro FX 580 @ 512MB or above, or equivalent AMD Graphic card
Minimum configuration: 1024 x 768 VGA with True Color
Recommended configuration: 1280 x 1024 VGA with True Color or above

Required for Floating License :
Installation of TCP/IP Network Protocol

 

[su_button url=”https://drive.google.com/open?id=1snbR1j0qjviExpwur0ubSsm-hcGav-Fx” size=”7″ center=”yes”] Download Link[/su_button]

 

Light Gage Truss Design Based on AISI 2001 & ER-4943P

Light Gage Truss Design Based on AISI 2001 & ER-4943P

 

The most complex component designed in light gauge framed residential structures are Roof trusses.

In the design of light gauge cold formed metal trusses, the designer is meant to adhere to the requirements of Loading standards and steel design standards.

Designers need to ensure that all the loads and load combinations stipulated in NASH Standard Residential and Low-rise Steel Framing Part 1 Design Crieteria and AS 4055 are checked and that the support, restraint conditions are accurately considered in the analysis.Various loads, load combinations, wind pressure coefficients, restraint and support conditions will be discussed in this paper.

In the design of truss members, the requirement of AS/NZS 4600 should be strictly adhered. Effective length criteria for truss members is also discussed in this paper.

This paper provides an illustrative example fo truss design using light gauge cold formed steel members.

 

[su_button url=”https://drive.google.com/open?id=1camZDVgo6uuXtnm6x13KGUxP4KE-zA2m” size=”7″ center=”yes”] Download Link[/su_button]

 

 

 

Reinforced Concrete Design Theory and Examples

Reinforced Concrete Design Theory and Examples

 

The third edition of the book has been written to conform to BS 8110 1997 the code for
structural use of concrete and BS 8007:1987 the code for Design of structures for retaining
aqueous liquids. The aim remains as stated in the first edition: to set out design theory
and illustrate the practical applications of code rules by the inclusion of as many useful
examples as possible. The book is written primarily for students on civil engineering
degree courses to assist them to understand the principles of element design and the procedures for the design of concrete buildings. The book will also be of assistance to new
graduates starting on their career in structural design.
The book has been thoroughly revised to conform to the updated code rules. Many new examples and sections have been added. In particular the chapter on Slabs has been considerably expanded with extensive coverage of Yield line analysis, Hillerborg’s strip
method and design for predetermined stress fields. In addition, four new chapters have
been added to reflect the contents of university courses in design in structural concrete.
The new chapters are concerned with design of prestressed concrete structures, design of
water tanks, a short chapter comparing the important clauses of Eurocode 2 and finally a
chapter on the fundamental theoretical aspects of design of statically indeterminate structures,
an area that is very poorly treated in most text books.
[su_button url=”https://drive.google.com/open?id=16LLrt5f9-s6U8XonUim0OhcLA0nw8Ne3″ size=”7″ center=”yes”] Download Link[/su_button]

CSI SAP2000 Ultimate v19.2.2

CSI SAP2000 Ultimate v19.2.2

SAP2000 follows in the same tradition featuring a very sophisticated, intuitive and versatile user interface powered by an unmatched analysis engine and design tools for engineers working on transportation, industrial, public works, sports, and other facilities.


The SAP name has been synonymous with state-of-the-art analytical methods since its introduction over 30 years ago. SAP2000 follows in the same tradition featuring a very sophisticated,

intuitive and versatile user interface powered by an unmatched analysis engine and design tools for engineers working on transportation, industrial, public works, sports, and other facilities.

Request Evaluation

Drones more damaging than bird strikes to planes, study finds

Drones more damaging than bird strikes to planes, study finds

 

As part of a multi-institution Federal Aviation Administration (FAA) study focused on unmanned aerial systems, researchers at The Ohio State University are helping quantify the dangers associated with drones sharing airspace with planes.

Last week, a research team from the Alliance for System Safety of UAS through Research Excellence (ASSURE) released a report concluding that drone collisions with large manned aircraft can cause more structural damage than birds of the same weight for a given impact speed.

The FAA will use the research results to help develop operational and collision risk mitigation requirements for drones. ASSURE conducted its research with two different types of drones on two types of aircraft through computer modeling and physical validation testing.

Kiran D’Souza, assistant professor of mechanical and aerospace engineering at Ohio State, led the engine ingestion portion of the first-of-its-kind study.

“Even small unmanned aircraft systems can do significant damage to engines,” D’Souza said.

Reports of close calls between drones and airliners have surged. The FAA gets more than 100 sightings a month of drones posing potential risks to planes, such as operating too close to airports. The FAA estimates that 2.3 million drones will be bought for recreational use this year, and the number is expected to rise in coming years.

Unlike the soft mass and tissue of birds, drones typically are made of more rigid materials. The testing showed that the stiffest components of the drone — such as the motor, battery and payload — can cause the most damage to the aircraft body and engine.

Led by Gerardo Olivares, director of Wichita State University’s National Institute for Aviation Research, the team evaluated the potential impacts of drones weighing 2.7 to 8 pounds on a single-aisle commercial transport jet and a business jet.

They examined collisions with the wing leading edge, the windshield, and the vertical and horizontal stabilizers. The windshields generally sustained the least damage and the horizontal stabilizers suffered the most serious damage. The severity levels ranged from no damage to failure of the primary structure and penetration of the drone into the airframe.

An expert in gas turbine dynamics, Ohio State’s D’Souza conducted computer simulations to evaluate the potential damage of a drone entering a generic mid-sized business jet engine, including damage to fan blades, the nacelle and the nosecone.

The simulations revealed that the greatest damage and risk occurs during takeoff, since the fan is operating at the highest speed at this phase of flight. The location of the drone’s contact on the fan is a key parameter, with the most damage occurring when the impact is near the blade tip.

According to D’Souza, the next step is the development of a representative commercial jet engine model for ingestion simulations, as well as full-scale testing to verify and validate the simulations. The team is planning additional research on engine ingestion in collaboration with engine manufacturers, as well as additional airborne collision studies with helicopters and general aviation aircraft.

The researchers concluded that drone manufacturers should adopt “detect and avoid” or “geo-fencing” capabilities to reduce the probability of collisions with other aircraft.

Story Source:

Materials provided by Ohio State University. Original written by Matt Schutte

error: Content is protected !!
Exit mobile version