What You Need To Know About Concrete

What You Need To Know About Concrete

 

 

Concrete is as much a part of the urban landscape as trees are to a forest. It’s so ubiquitous that we rarely even give it any regard at all. But underneath that drab grey exterior is a hidden world of compexity.

Concerete is one of the most versatile and widely-used construction materials on earth. It’s strong, durable, low maintenance, fire resistant, simple to use, and can be made to fit any size or shape from the unfathomably massive to the humble stepping stone.

However, none of those other advantages would matter without this : it’s cheap. Compared to oter materials, concrete is a bargain and it is easy to see why if we look at what’s made of.

Concrete has four primary ingredients : Water, sand (also called fine agregate), gravel (aka coarse aggregate) and cement.

A recipe that is not quite a paragon of sophistication, one ingredient falls from the sky and the rest essentially straight out of the ground. But, from these humble beginnings are born essentially the basis of the entire world’s infrastructure.

Actually, of the four, cement is the only ingredient in conrete with anay complexity at all. The most common type used in conrete is know as Portland cement. It’s made by quarried materials (mainly limestone) into a kiln, then grinding them into a fine powder with a few extra herbs and spices.

 

Cement role :

Cement is a key constituent in a whole host of construction materials, insluding grout, mortar, stucco and of course concrete. A lot of people don’t know this, but every time you say cement when you were actually talking about concrete, a civil engineer’s calculator runs out of batteries.

The cement key role es to turn concrete from liquide to a solid. Portland cement cures not through drying or evaporation of the water, but through a chemical reaction called hydration.

The water actually becomes a part of cured concrete, this is why you shouldn’t let concrete dry out while it’s curing. Lack of water can prematurely sop the hydration process, preventing the concrete from reaching its full strenght.

In fact, as long as you avoid washing out the cement, concrete made with Portland cement can be placed and cured completely under water. It will set and harden just as well (and maybe even better) as if it were placed in the dry.

Aggregate role :

 

But, you may be wondering « If water plus cement equals hard, what’s the need for the aggregate ? ».

To answer that question, let’s take a closer look by cutting this sample through with a diamond blade. Under a macro lense, is tarts to become obvious how the individual constituents contribute to the concrete.

Aggregates for Concrete

Notice how the cement paste filled the gaps between the fine and coarse aggregate. It serves as a blinder, holding the other ingredients together.

You don’t build structures from pure cement the same way you don’t build furniture exclusively out of wood glue.

Instead we use cheaper filler materials – gravel and sand – to make up the bulk of concrete’s volume. This saves cost, but the agregates also improve the structural properties of the concrete by increasing the strenght and reducing the amount of shrinkage as the concrete cures.

The reason that civil engineers and concrete professionales need to be pedantic about the difference between cement and concrete is this : even though the fundamental recipe for concrete is fairly simple with its four ingredients, there is a trmendous amount of complexity involved in selecting the exact quatities and characteristics of those ingredients.

In fact, the process of developing a specific concrete formula is called mix design. One of the most obvious knobs that you can turn on a mix design is how much water is inluded. Obviously, the more water you add to your concrete, the easier if flows into the forms. This can make a big difference to the people who are placing it. But, this added workability comes at a cost to the concret’s strenght.

 

 

 

 

What is High Performance concrete – HPC?

What is High Performance concrete – HPC?

 

 

1. Definition Of High Performance Concrete:

High-performance concrete may be defined as concrete with strength and durability significantly beyond those obtained by normal means. The required properties for concrete to be classiffied as high performance therefore depend on the properties of normal concrete achievable at a particular time and location.

At the present time, high-performance concrete in developed countries usually refers to concrete with 28-day compressive strength beyond 70±80 MPa, durability factor (defined as the percentage of original modulus retained after 300 freeze/thaw cycles) above 80%, and w/c below 0.35.

It is made with good quality aggregates, high cement content (450±550 kg mw-3), and a high dosage of both silica fume (5±15 wt.% of cement) and super plasticizer (5±15 l mw-3). Sometimes other pozzo-lanic materials are also used.

The high performance is achieved with the use of low w/c (0.20±0.35) as well as pozzolans to produce a dense microstructure that is high in strength and low in permeability.

Superplasticizer is added to keep the mix workable.With high cement content, the use of super-pasticizers and silica fume and the need for more stringent quality control the unit cost of high-performance concrete can exceed that of normal concrete by 30±100%.

2. When High Performance Concrete is Used:

 

Despite the higher material cost, the use of high-performance concrete is found to be economical for columns of tall buildings, as the amount of steel reinforcement can be reduced.

In bridges, the reduction in deck size and weight effectively increases the allowable unsupported span. For a continuous bridge, the number of piers can be reduced. In many infrastructure projects, high-performance concrete is chosen for its durability against various types of chemical (e.g., sulfate or chloride) and physical attack (e.g., abrasion).

High-performance concrete can also be produced with lightweight aggregates. However, the aggregate needs to be very carefully chosen to make sure it is sufficiently strong. As long as the light weight aggregateis strong enough, its use can indeed be advantageous.

By saturating their pores with water before mixing, these aggregates can act as internal reservoirs that supply water to ensure continued cement hydration and prevent auto geneous shrinkage due to self-desiccation. This aspect is of particular relevance to concrete with a very low w/c, in which the early development of high density and low permeability makes it difficult for water to penetrate uniformly forthe hydration process to continue.

Besides the production of high-performance concrete, superplasticizers are also commonly used in the production of high-workability concrete. With aslump value of 180±230 mm, high-workability concrete can be pumped rapidly over long distances, easily compacted in structures with highly congested re-inforcement, and can even be self-compacting (i.e.,requiring no external compaction effort).

With super-plasticizers, it is also possible to reduce the cement content while retaining the same workability. The possibility of thermal cracking in massive structures can therefore be reduced.

In the continual quest for improving concrete performance, it was soon realized that the size of aggregates is an important factor. By using very fine aggregates, superplasticizers, and a high dose of silica fume (about 20±30% of the cement content) concrete strength beyond 200 MPa can now be achieved by conventional techniques. One example is DSP–densified system with fine particles.

Using strongaggregates of small size (e.g., calcined bauxite withmaximum size of 4 mm), DSP with compressive strength over 250 MPa can be produced.

Reaction powder concrete (RPC) is another example. With the maximum particle size limited to 0.4 mm, the compressive strength reaches 170 MPa by 28 days under room temperature curing. Curing at 80±90∞C will further increase the strength to 230 MPa. If pressure is applied before and during setting, and curing is carriedout at 400∞C, strength as high as 680 MPa can be attained. With very high strength, both DSP and RP Care extremely brittle. Fiber reinforcement is therefore essential to prevent catastrophic failure at ultimateload.

Concrete Structures in Earthquake Free PDF

Concrete Structures in Earthquake Free PDF

By Thomas T. C. Hsu

 

This book gathers 23 papers by top experts from 11 countries, presented at the 3rd Houston International Forum: Concrete Structures in Earthquake.

Designing infrastructures to resist earthquakes has always been the focus and mission of scientists and engineers located in tectonically active regions, especially around the “Pacific Rim of Fire” including China, Japan, and the USA.

The pace of research and innovation has accelerated in the past three decades, reflecting the need to mitigate the risk of severe damage to interconnected infrastructures, and to facilitate the incorporation of high-speed computers and the internet.

The respective papers focus on the design and analysis of concrete structures subjected to earthquakes, advance the state of knowledge in disaster mitigation, and address the safety of infrastructures in general.

Content :
  • Periodic Material-Based Three-Dimensional (3D) Seismic Base
  • Shear Behavior Prediction of Non-ductile Reinforced Concrete Members in Earthquake
  • Experimental Study of Novel Concrete Frames Considering
  • Validation of the PARC_CL 2.0 Crack Model Strength Strength
  • Research on Resilient Reinforced Concrete Building Structural System
  • The State of Knowledge and Practice in Concrete Structure Design for Earthquake
  • Development of Large-Diameter Reinforcing Bars for the Seismic Resistance of Reinforced Concrete Bridge Columns
  • Reversed Cyclic Tests of 1/13 Scale Cylindrical Concrete Containment Structures
  • Understanding the Seismic Behaviour of FRP Retrofitted RC Shear Walls: Past and Present
  • Seismic Response and Collapse Risk of Shearwall Buildings Subjected to Long Duration Ground Motion
  • Drift Capacity at Onset of Bar Buckling in RC Members Subjected to Earthquakes

 

Download Link

Design For Equipment Anchorage To Bottom Concrete Spreadsheet

Design For Equipment Anchorage To Bottom Concrete Spreadsheet

 

In structural engineering, a diaphragm is a structural element that transmits lateral loads to the vertical resisting elements Designs for equipment anchorage from AJ Engineering are specialized for all sorts of mechanical, electrical, plumbing, and fire protection equipment.

In the past, we have created anchorage designs for everything from pumps and tanks to custom air handling units and cooling towers

 

Download Link

error: Content is protected !!
Exit mobile version