Thermal Effects For Steel Building Or Structure Calculation Spreadsheet

Thermal Effects For Steel Building Or Structure Calculation Spreadsheet

 

This spreadsheet is a program written in MS-Excel for the purpose of considering the thermal effects for a
steel building or structure. Specifically, the appropriate maximum design temperature change, the change of
length or stress as applicable, and the maximum building or structure length either without or between expansion
joints is determined. There is also a “General Thermal Effects Calculator” which can be used to selectively
determine any of the analysis parameters, as well as a temperature converter which can be used to convert from
oC (Celsius) to oF (Fahrenheit).

 

Download Link

What are Rivet Connections?

What are Rivet Connections?

 

Rivets are non threaded fasteners that are usually manufactured from steel or aluminium. They consist of a preformed head and shank, which is inserted into the material tobe joined and the second head that enables the rivet to function as a fastener is formedon the free end by a variety of means known as setting.

A conventional rivet before and after setting is illustrated in Fig. 1.

Fig.1 Conventional rivet before and after setting

Rivets are widely used to join components in aircraft (e.g. see Fig.2) boilers, ships and boxes and other enclosures. Rivets tend to be much cheaper to install than bolts and the process can be readily automated with single riveting machines capable of installing thousands of rivets an hour.

Fig 2. Two historical examples of the use of rivets on the Lockheed Electra and RB211engine nacelle.

Rivets can be made from any ductile material such as carbon steel, aluminium and brass. A variety of coatings are available to improve corrosion resistance. Care needs to be taken in the selection of material and coating to avoid the possibility of corrosion by galvanic action.

In general a given size rivet will be not as strong as the equivalent threaded fastener.

The two main types of rivet are tubular and blind and each type are available in amultitude of varieties. The advantage of blind rivets (Fig.3) is that they require access to only one side of the joint.

Fig 3. An example of the application of a closed end blind rivet

A further type of rivet with potentially many over-all advantages, from the production perspective, is the self-piercing rivet that does not require a predrilled hole. The rivet is driven into the target materials with high force, piercing the top sheets and spreading outwards into the bottom sheet of material under the influence of an upsetting die to form the joint.

Factors in the design and specification of rivets include the size, type and material for the rivet, the type of joint, and the spacing between rivets.

There are two main types of riveted joint: lap-joints and butt-joints(Fig.4).

In lap joints the components to be joined overlap each other, while for butt joints an additional piece of material is used to bridge the two components to be joined which are butted up against each other.

Rivets can fail by shearing through one cross-section known as single shear, shearing through two cross-sections known as double shear, and crushing. Riveted plates can fail by shearing, tearing and crushing.

Hollow Structural Section – Connections And Trusses Free PDF

Hollow Structural Section – Connections And Trusses Free PDF

 

Rectangular hollow section (RHS) trusses can be formed by welding together single- or double-miter cut RHS web members and RHS chords. Web members may either be gapped or overlapped at the chord face.

Overlapped connections (or joints) are stiffer and stronger than gapped connections, but both are considered to be “semi-rigid” (neither pinned nor rigid).

Lack of connection rigidity is well-known to affect the force distribution and deflections in RHS trusses

Content :
  • 1. Introduction
  • 2. Previous truss tests
  • 3. Truss test program
  • 4. RHS truss models
  • 5. Evaluation of truss models
  • 6. Comments on CSA S16-14 and additional recommendations
  • 7. Conclusions

Download Link

Steel Bridges Connecting Methods

Steel Bridges Connecting Methods

 

Steel bridges, as well as other steel structures, are built of steel memberssuch as beams, columns, and truss members by connections or joints. Theuse of connections can affect the fabrication method, serviceability, safety,and the cost, thus they are particularly important in the steel bridge construction.

In general, the connection design should follow the principle thatshould be safe, reliable, simply in design and fabrication, easy installation, and should be able to save the materials and costs.

In steel bridges, the often used connecting methods include rivet connection, bolt connections, and welding connections, as shown in Fig.1.

Bolt connection is used earliest since the mid-18th century and stillis being used as one of the most important connections.

The rivet connection has been used since the early 19th century; there after the welding connection was also created and used in the end of 19th century.

The welding joint became very popular and gradually replaced the rivet connection in thesteel bridge construction. With the development of high-strength bolted connection at the mid-20th century, they are also widely used in the steel bridge construction.

 

Fig.1 Different connecting methods. (A) Welded connection. (B) Bolted connection.(C) Riveted connection

 

1. Bolted Connection

Bolted connection is more frequently used than other connection methods.They are very easy to operate and no special equipment is required. This is in particular due to the development of higher strength bolts, the easy to use and strong structural steel connections become possible.

In the bolt design, two kinds of forces including tension and shear forces should be considered.Bolted connection can be divided into ordinary bolted connection or high-strength bolted connection. Both of them are easy in installation, particularlysuitable for connection in the construction site.

Ordinary bolts are easy todisassemble and are generally used in temporary connections or those needto be disassembled. High-strength bolts are easy to disassemble, and theyhave higher strength and stiffness. However, the bolted connections alsohave some disadvantages because it is necessary to drill holes and adjustthe holes during the installation.

The cutting of the holes may weakenthe steel members and increase the use steel materials due to the memberoverlapping, and also this will increase the workload in the construction.There are many reasons that may result in the failure of the bolted connec-tions, such as overloading, over torquing, or damage due to corrosion.

2. Rivet Connection

From the mechanical behavior and design points of view, the rivet connectionis very similar to ordinary bolt connection. A rivet is a permanent mechanicalfastener, which was very popular for the early steel bridges due to their good performance in plasticity, toughness, integrity under statistic load, and fatigue performance under dynamic load.

Also, quality inspection of welded connection is also relatively easy than other connection methods.However, the rivet connection is rarely used in nowadays due to disad-vantages like complex in structure, high consumption of steel, high noiseduring the construction, etc., and gradually replaced by the bolted connec-tion and welded connection.

3. Welded Connection

Welding is another connecting method used to connect steel components inthe fabrication factory and on bridge construction site. Common types ofwelds are butt welds, fillet welds, and plug welds, as shown in Fig.2.

The work place (in a factory or on site) is an important criterion fordeciding whether to choose a bolted or a welded connection. If the connec-tion is performed in a factory, it is generally most economically achievedthrough welding. Although it is technically possible for site welding, theadditional cost for setting up welding and testing facilities as well as theincreased erection time usually makes bolted connections become moreefficient.

Fig.2 Welded connections. (A) Butt joint. (B) Longitudinal joint. (C) Butt joint.(D) Corner joint-1. (E) Edge joint. (F) Transverse fillet joint. (G) Transverse fillet joint.(H) Tee joint. (I) Corner joint-2.

error: Content is protected !!
Exit mobile version