Steel Rafter Details Autocad Free Drawing
For more Autocad Free Drawings please visit Cadtemplates Website.
Construction projects require many decisions. A key decision is to find the most effective option, as well as determining which process could produce ideal results.
Take a look at this breakdown. This example weighs the pros and cons of Structural Steel versus Concrete.
Structural Steel: A large majority of all steel manufactured today comes from recycled materials; A992 steel. This recycling usage makes the material much cheaper when compared to other materials. Although the price of steel can fluctuate, it typically remains a less expensive option compared to reinforced concrete.
Concrete: A large cost benefit to concrete is the fact that its price remains relatively consistent. On the other hand, concrete also requires ongoing maintenance and repairs, meaning added costs throughout its lifetime. Supply-and-demand may also impact the availability of concrete. Even though it can be poured and worked with directly onsite, the process to completion can be lengthy and could accrue higher labor costs.
Structural Steel: Structural steel is extremely strong, stiff, tough, and ductile; making it one of the leading materials used in commercial and industrial building construction.
Concrete: Concrete is a composite material consisting of cement, sand, gravel and water. It has a relatively high compressive strength, but lacks tensile strength. Concrete must be reinforced with steel rebar to increase a structure’s tensile capacity, ductility and elasticity.
Structural Steel: Steel is inherently a non-combustible material. However, when heated to extreme temperatures, it’s strength can be significantly compromised. Therefore, the IBC requires steel to be covered in additional fire resistant materials to improve safety.
Concrete: The composition of concrete makes it naturally fire resistant and in line with all International Building Codes (IBC). When concrete is used for building construction, many of the other components used in construction are not fire resistant. Professionals should adhere to all safety codes when in the building process to prevent complications within the overall structure.
Structural Steel: Structural steel is nearly 100% recyclable as well as 90% of all Structural Steel used today is created from recycled steel. Due to its long lifespan, steel can be used as well as adapted multiple times with little to no compromise to its structural integrity. When manufactured, fabricated and treated properly, structural steel will have a minimal impact on the environment.
Concrete: The elements within concrete are natural to our environment, reducing the harm to our world. Concrete may be crushed and used in future mixtures. This type of recycling can reduce a presence of concrete in landfills.
Structural Steel: Steel is a flexible material that can be fabricated into a wide array of designs for endless applications. The strength-to-weight ratio of steel is much higher when compared to other affordable building materials. Steel also offers many different aesthetic options that different materials, such as concrete, cannot compete with.
Concrete: Although concrete can be molded into many different shapes, it does face some limitations when it comes to floor-to-floor construction heights and long, open spans.
Structural Steel: Steel may corrode when it comes into contact with water. If left without proper care, it could affect the safety and security of a structure. Professionals should care for the steel with such processes such as water-resistant seals and paint care. Fire-resistant features may be included when water-resisting seals are applied.
Concrete: With proper construction and care, reinforced concrete is water resistant and will not corrode. However, it’s important to note that the steel reinforcement inside should never be exposed. If exposed, the steel becomes compromised and can easily corrode, compromising the strength of the structure.
Reference : blog.swantonweld.com
The RIBA Plan of Work is published by the Royal Institute of British Architects (RIBA). The latest version is also is endorsed by the Chartered Institute of Architectural Technologists, the Construction Industry Council, the Royal Incorporation of Architects in Scotland, the Royal Society of Architects in Wales and the Royal Society of Ulster Architects.
It was originally launched in 1963 as a fold out sheet that illustrated the roles of participants in design and construction in a simple matrix format. The first detailed plan of work was published in 1964 (ref. Introduction, RIBA Plan of Work 2007).
Split into a number of key project stages, the RIBA Plan of Work provides a shared framework for design and construction that offers both a process map and a management tool. Whilst it has never been clear that architects actually follow the detail of the plan in their day to day activities, the work stages have been used as a means of designating stage payments and identifying team members responsibilities when assessing insurance liabilities, and they commonly appear in contracts and appointment documents.
The Plan of Work has evolved through its history to reflect the increasing complexity of projects, to incorporate increasing and changing regulatory requirements and to reflect the demands of industry and government reports criticising the industry. It has moved from a simple matrix representing just the traditional procurement route, to include multiple procurement routes, more diverse roles, multi-disciplinary teams, government gateways and to add stages before and after design and construction. It is supported by other RIBA publications such as the RIBA Job Book.
The Plan of Work has been criticised for being too architect focused, for missing many of the client tasks undertaken at the beginning of a project, and for condensing construction into a single stage.
The latest version, published in 2013, has moved online and has undergone a radical overhaul. It is now more flexible, with stages such as planning permission and procurement being moveable, it reflects increasing requirements for sustainability and Building Information Modelling (BIM) and it allows simple, project-specific plans to be created. In addition, the work stages have been re-structured and re-named.:
There is also a BIM overlay and a sustainability overlay for the plan, but these do not seem to have been updated to reflect the 2013 work stage definitions.
The 2013 Plan of Work has come under some criticism as it is significantly less detailed than the previous 2007 edition, its flexibility and customisability is very limited and the definition and naming of work stages does not reflect the terminology that is used by the industry.
sometimes aided by inherent stiffness of floors and cladding. The structural design and detailing of the building must consider this carefully and take into account intended sequences of construction and erection.
Steel is the most versatile of the traditional construction materials and the most reliable in terms of consistent quality. By its very nature it is also the strongest and may be used to span long distances with a relatively low self weight. Using modern techniques for corrosion protection the use of steel provides structures having a long reliable life, and allied with use of fewer internal columns achieves flexibility for future occupancies. Eventually when the useful life of the structure is over, the steelwork may be dismantled and realise a significant residual value not
achieved with alternative materials. There are also many cases where steel frames have been used again, re-erected elsewhere.
For courses that cover and/or include structural steel design using the ASD (Allowable Stress Design) method, such as Structures, Structural Analysis/Design, Design of Steel Structures, Building with Steel, Steel Construction and Steel Detailing in 2/4-year technology programs, architectural programs, and construction programs.
Written specifically for the engineering technology/technician level, this text offers a straightforward, elementary, noncalculus, practical problem-solving approach to the analysis, design, and detailing of structural steel members.
Using numerous example problems and a step-by-step solution format, it focuses on the classical and traditional ASD (Allowable Stress Design) method of structural steel design and introduces the LRFD (Load and Resistance Factor Design) method (fast-becoming the method of choice for the future).